题目:

  1. 题目描述
  2. 某大学有N个职员,编号为1~N。他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri,但是呢,如果某个职员的上司来参加舞会了,那么这个职员就无论如何也不肯来参加舞会了。所以,请你编程计算,邀请哪些职员可以使快乐指数最大,求最大的快乐指数。
  3. 输入格式
  4. 第一行一个整数N。(1<=N<=6000)
  5. 接下来N行,第i+1行表示i号职员的快乐指数Ri。(-128<=Ri<=127)
  6. 接下来N-1行,每行输入一对整数L,K。表示KL的直接上司。
  7. 最后一行输入0
  8. 输出格式
  9. 输出最大的快乐指数。

思路:

树形DP模板题。

我们可以想到,对于某节点 \(x\),它肯定是只有选和不选。

对于选,它的直接下属不能选。

对于不选,它的直接下属可选可不选。

那么我们的状态和转移方程就可以出来了。

状态:

\[\Large{f_{x,1}\text{表示节点}x\text{选}}
\]

\[\Large{f_{x,0}\text{表示节点}x\text{不选}}
\]

转移方程:

\[\Large{f_{x,0}=\sum_{y\in son(x)} max\{f_{y,1},f_{y, 0}\}}
\]

\[\Large{f_{x,1}=\sum_{y\in son(x)}} f_{y,0}
\]

结尾:

竟然有人不会邻接表(链式前向星)

没有上司的舞会

【SSL题解报告】没有上司的舞会的更多相关文章

  1. 洛谷 p1352 没有上司的舞会 题解

    P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员 ...

  2. [codevs1380]没有上司的舞会([BZOJ2060][Usaco2010 Nov]Visiting Cows 拜访奶牛)

    [codevs1380]没有上司的舞会 试题描述 Ural大学有N个职员,编号为1~N.他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.每个职员有一个快乐指数.现 ...

  3. 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.

    没有上司的舞会  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...

  4. 【洛谷P1352】没有上司的舞会

    [洛谷P1352]没有上司的舞会 x舷售 锚」翅θ 但是 拙臃 蓄ⅶ榔 暄条熨卫 翘ヴ馇 表现无愧于雪月工作室的核心管理 爸惚扎掬 颇瓶 芟缆肝 貌痉了 洵┭笫装 嗝◇裴腋 褓劂埭 ...

  5. 2015浙江财经大学ACM有奖周赛(一) 题解报告

    2015浙江财经大学ACM有奖周赛(一) 题解报告 命题:丽丽&&黑鸡 这是命题者原话. 题目涉及的知识面比较广泛,有深度优先搜索.广度优先搜索.数学题.几何题.贪心算法.枚举.二进制 ...

  6. Codevs1380没有上司的舞会_KEY

    没有上司的舞会 1380 没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目描述 Description Ural大学有N个职员,编号为1~N.他们有从属关系,也就是说他们的关系 ...

  7. 『没有上司的舞会 树形DP』

    树形DP入门 有些时候,我们需要在树形结构上进行动态规划来求解最优解. 例如,给定一颗\(N\)个节点的树(通常是无根树,即有\(N-1\)条无向边),我们可以选择任意节点作为根节点从而定义出每一颗子 ...

  8. 没有上司的舞会|codevs1380|luoguP1352|树形DP|Elena

    没有上司的舞会  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond   题目描述 Description Ural大学有N个职员,编号为1~N.他们有从属关系 ...

  9. cojs 强连通图计数1-2 题解报告

    OwO 题目含义都是一样的,只是数据范围扩大了 对于n<=7的问题,我们直接暴力搜索就可以了 对于n<=1000的问题,我们不难联想到<主旋律>这一道题 没错,只需要把方程改一 ...

随机推荐

  1. 学习笔记39_EF的DAL层(精)

    通用的分页查询 public IQueryable<UserInfo> GetPage<T>(int pageSize,int pageIndex,out int total, ...

  2. 自闭版节奏大C

    1,2,3,4打碟 #include <bits/stdc++.h> #include <conio.h> #include <windows.h> using n ...

  3. 深度解密Go语言之 pprof

    目录 什么是 pprof pprof 的作用 pprof 如何使用 runtime/pprof net/http/pprof pprof 进阶 Russ Cox 实战 查找内存泄露 总结 参考资料 相 ...

  4. CSPS模拟 46

    勿忘国耻. 由于重新评测我看到了不是很真实的一幕 紧接着是更不真实的一幕 就在虚假形象快要建立完成的时候 它由于来自东方的神秘力量倒塌了 被两个学校的大佬爆踩了(捂脸 T1 无脑背包? 考试时想1h想 ...

  5. [校内自测 NOIP模拟题] chenzeyu97要请客(单调栈)

    题目描述 chenzeyu97的家可以看成是一个n*m的矩阵,每块区域都有独一无二的海拔高度h(h>0)!其最大值为n*m. 现在他要选择一个子矩阵摆放一张桌子,在他眼里,这样摆放桌子的美观度为 ...

  6. 跳跳棋——二分+建模LCA

    题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他们的位置移动 ...

  7. es ik 分词 5.x后,设置默认分词

    1.使用模板方式,设置默认分词 注: 设置模板,需要重新导入数据,才生效 通过模板设置全局默认分词器 curl -XDELETE http://localhost:9200/_template/rtf ...

  8. javascript中判断数据类型

    编写javascript代码的时候常常要判断变量,字面量的类型,可以用typeof,instanceof,Array.isArray(),等方法,究竟哪一种最方便,最实用,最省心呢?本问探讨这个问题. ...

  9. 实验:基于http的yum源

    实验:基于http的yum源 selinux,firewalld已经关闭',系统为CentOS7 repodata所在的目录就是yum源 下面介绍了如何把本地光盘通过httpd服务器变成yum源:多个 ...

  10. Servlet中response的相关案例(重定型,验证码,ServletContext文件下载)

    重定向 首先设置状态码,设置响应头 //访问Demo1自动跳转至Demo2 //设置状态码 response.setStatus(302); //设置响应头 response.setHeader(&q ...