关于TCP三次握手四次分手,之前看资料解释的都很笼统,很多地方都不是很明白,所以很难记,前几天看的一个博客豁然开朗,可惜现在找不到了。现在把之前的疑惑总结起来,方便一下大家。

疑问一,上图传递过程中出现的几个字符(SYN,ACK,FIN,seq,ack)各代表什么意思?:

SYN,ACK,FIN存放在TCP的标志位,一共有6个字符,这里就介绍这三个:

SYN:代表请求创建连接,所以在三次握手中前两次要SYN=1,表示这两次用于建立连接,至于第三次什么用,在疑问三里解答。

FIN:表示请求关闭连接,在四次分手时,我们发现FIN发了两遍。这是因为TCP的连接是双向的,所以一次FIN只能关闭一个方向。

ACK:代表确认接受,从上面可以发现,不管是三次握手还是四次分手,在回应的时候都会加上ACK=1,表示消息接收到了,并且在建立连接以后的发送数据时,都需加上ACK=1,来表示数据接收成功。

seq:序列号,什么意思呢?当发送一个数据时,数据是被拆成多个数据包来发送,序列号就是对每个数据包进行编号,这样接受方才能对数据包进行再次拼接。

初始序列号是随机生成的,这样不一样的数据拆包解包就不会连接错了。(例如:两个数据都被拆成1,2,3和一个数据是1,2,3一个是101,102,103,很明显后者不会连接错误)

ack:这个代表下一个数据包的编号,这也就是为什么第二请求时,ack是seq+1,

疑问二,每次发送请求时为什么ack要+1?:

关于seq和ack关键字的解释中已经说明了。

疑问三,为什么需要三次握手?:

下面解释明明两次就可以建立连接的为什么还要加第三次的确认。

如果发送两次就可以建立连接话,那么只要客户端发送一个连接请求,服务端接收到并发送了确认,就会建立一个连接。

可能出现的问题:如果一个连接请求在网络中跑的慢,超时了,这时客户端会从发请求,但是这个跑的慢的请求最后还是跑到了,然后服务端就接收了两个连接请求,然后全部回应就会创建两个连接,浪费资源!

如果加了第三次客户端确认,客户端在接受到一个服务端连接确认请求后,后面再接收到的连接确认请求就可以抛弃不管了。

疑问四,为什么需要四次分手?:

TCP是双向的,所以需要在两个方向分别关闭,每个方向的关闭又需要请求和确认,所以一共就4次。

先上个TCP三次握手和四次分手的图:

 

(这里要吐槽一下,当初不懂的时候查资料,发现好多地方把ACK和ack都搞混了,害的我被坑了好久...)

如果你仔细看了上面对每个字符的解释,那么相信我画的三次握手和四次分手的图你也就明白了。

再复习一遍    

在创建连接时,

1.客户端首先要SYN=1,表示要创建连接,

2.服务端接收到后,要告诉客户端:我接受到了!所以加个ACK=1,就变成了ACK=1,SYN=1

3.理论上这时就创建连接成功了,但是要防止一个意外(见疑问三),所以客户端要再发一个消息给服务端确认一下,这时只需要ACK=1就行了。

三次握手完成!

在四次分手时,

1.首先客户端请求关闭客户端到服务端方向的连接,这时客户端就要发送一个FIN=1,表示要关闭一个方向的连接(见上面四次分手的图)

2.服务端接收到后是需要确认一下的,所以返回了一个ACK=1

3.这时只关闭了一个方向,另一个方向也需要关闭,所以服务端也向客户端发了一个FIN=1 ACK=1

4.客户端接收到后发送ACK=1,表示接受成功

四次分手完成!

我为什么没有在上面的过程中,加入seq和ack呢?就如我对这两个关键字的解释的一样,这两个是数据拆分和组装必备元素,所以所有的请求都需要这两个元素,只要明白了作用,就可以自己举一反三。

关于握手和分手,主要还是SYN,FIN,ACK的变化,这才是重点!

TCP三次握手四次分手—简单详解的更多相关文章

  1. TCP三次握手四次挥手过程详解

    http://blog.csdn.net/imilli/article/details/50620104 TCP头部: 其中 ACK   SYN  序号  这三个部分在以下会用到,它们的介绍也在下面. ...

  2. 对TCP三次握手四次分手还不清楚的速度进,超简单解析,明白了就很好记!

    关于TCP三次握手四次分手,之前看资料解释的都很笼统,很多地方都不是很明白,所以很难记,前几天看的一个博客豁然开朗,可惜现在找不到了.现在把之前的疑惑总结起来,方便一下大家. 先上个TCP三次握手和四 ...

  3. 对TCP三次握手四次分手还不清楚,超简单解析

      关于TCP三次握手四次分手,之前看资料解释的都很笼统,很多地方都不是很明白,所以很难记,前几天看的一个博客豁然开朗,可惜现在找不到了.现在把之前的疑惑总结起来,方便一下大家. 先上个TCP三次握手 ...

  4. Tcp 三次握手 四次分手

    看了 余晟以为的 “tcp没那么难吧”,算是对三次握手,四次分手有了一点点理解,记录下来以方便自己以后的查看. 原文链接:https://mp.weixin.qq.com/s?__biz=MzA3MD ...

  5. TCP三次握手和连接关闭过程详解

    1.建立连接协议(三次握手) (1)客户端发送一个带SYN标志的TCP报文到服务器.这是三次握手过程中的报文1. (2) 服务器端回应客户端的,这是三次握手中的第2个报文,这个报文同时带ACK标志和S ...

  6. TCP三次握手四次分手

    TCP(Transmission Control Protocol) 传输控制协议 TCP是主机对主机层的传输控制协议,提供可靠的连接服务,采用三次握手确认建立一个连接: 位码即tcp标志位,有6种标 ...

  7. [转]Linux服务器上11种网络连接状态 和 TCP三次握手/四次挥手详解

    一.Linux服务器上11种网络连接状态: 图:TCP的状态机 通常情况下:一个正常的TCP连接,都会有三个阶段:1.TCP三次握手;2.数据传送;3.TCP四次挥手. 注:以下说明最好能结合”图:T ...

  8. (转)TCP三次握手四次挥手

    转自:http://www.jellythink.com/archives/705 参考:http://blog.csdn.net/whuslei/article/details/6667471 [注 ...

  9. TCP三次握手/四次挥手详解

    一. TCP/IP协议族 TCP/IP是一个协议族,通常分不同层次进行开发,每个层次负责不同的通信功能.包含以下四个层次: 1. 链路层,也称作数据链路层或者网络接口层,通常包括操作系统中的设备驱动程 ...

随机推荐

  1. jenkins构建,拉取不到最新版本代码,报clock of the subversion server appears to be out of sync

    一.问题描述 今天遇到个问题,我这边提交了代码后,一般会马上去jenkins上点一下,构建到开发环境上. 但是发现修改没生效,后来发现,提交的版本假设是3250,但是jenkins构建使用的版本为32 ...

  2. Spring Boot Redis 解析

    redis使用示例 本示例主要内容 使用lettuce操作redis redis字符串存储(RedisStringController.java) redis对象存储(RedisObjectContr ...

  3. 手机分辨率DPI怎么计算

    长度方向像素数平方加宽度方向像素平方然后开根号,最后除以屏幕大小(英寸)

  4. 深入selenium三种等待方式使用

    深入selenium三种等待方式使用 处理由于网络延迟造成没法找到网页元素 方法一 用time模块不推荐使用 用time模块中的time.sleep来完成等待 from selenium import ...

  5. Java集合专题

    1.Java 中常用的容器有哪些? 常见容器主要包括 Collection 和 Map 两种,Collection 存储着对象的集合,而 Map 存储着键值对(两个对象)的映射表. Collectio ...

  6. Thymeleaf常用语法:表达式语法之运算符

    Thymeleaf表达式语法之常量分为字符串常量.数字常量.布尔值常量.空值常量:运算符分为算术运算符.关系运算符.条件运算符.无操作符. 开发环境:IntelliJ IDEA 2019.2.2Spr ...

  7. Spring Boot 2 发布与调用REST服务

    开发环境:IntelliJ IDEA 2019.2.2Spring Boot版本:2.1.8 一.发布REST服务 1.IDEA新建一个名称为rest-server的Spring Boot项目 2.新 ...

  8. MD5是个好东西 / MD5 is a nice guy

    md5是一种摘要生成算法,通过对消息生成唯一摘要,可校验消息是否被篡改. 众所周知,md5广泛用在http接口通讯的安全控制上,通过在签名原始串后加上商户通信秘钥,进行MD5运算,形成的摘要字符串即为 ...

  9. MySQL基础之数据管理【4】

    外键约束的使用(只有InnoDB存储引擎支持外键) create table news_cate( id tinyint unsigned auto_increment key comment '编号 ...

  10. nginx 七层负载均衡

    [tcp] nginx 七层负载均衡 nginx负载均衡概述 当我们的Web服务器直接面向用户,往往要承载大量并发请求,单台服务器难以负荷,我使用多台Web服务器组成集群,前端使用Nginx负载均衡, ...