hadoop的运行模式
概述
1)资料查询(官方网址)
(1)官方网站:
http://hadoop.apache.org/
(2)各个版本归档库地址
https://archive.apache.org/dist/hadoop/common/hadoop-2.7.7/
(3)hadoop2.7.6版本详情介绍
https://hadoop.apache.org/docs/r2.7.6/
2)Hadoop运行模式
(1)本地模式(默认模式):
不需要启用单独进程,直接可以运行,测试和开发时使用。
(2)伪分布式模式:
等同于完全分布式,只有一个节点。
(3)完全分布式模式:
多个节点一起运行。
1. 本地文件运行Hadoop 示例
1.1 运行官方grep案例
1)创建在hadoop-2.7.7文件下面创建一个input文件夹
2)将hadoop的xml配置文件复制到input
3)执行share目录下的mapreduce程序
4)查看输出结果
代码示例:
[shaofei@hadoop128 hadoop-2.7.7]$ mkdir input
[shaofei@hadoop128 hadoop-2.7.7]$ cp -r etc/hadoop/*.xml input/
[shaofei@hadoop128 hadoop-2.7.7]$ ll input/
[shaofei@hadoop128 hadoop-2.7.7]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.7.jar grep input/ output 'dfs[a-z.]+'
[shaofei@hadoop128 hadoop-2.7.7]$ cat output/*
1.2 官方wordcount案例
1)创建在hadoop-2.7.7文件下面创建一个wcinput文件夹
2)在wcinput文件下创建一个wc.input文件
3)编辑wc.input文件
4)回到hadoop目录/opt/module/hadoop-2.7.7
5)执行程序:
6)查看结果:
代码示例:
[shaofei@hadoop128 hadoop-2.7.7]$ mkdir wcinput
[shaofei@hadoop128 hadoop-2.7.7]$ vim wcinput/input.input
java
java
java
hadoop
hadoop
python
pyfysf
upuptop
java
lll
haha
helloworld
:wq
[shaofei@hadoop128 hadoop-2.7.7]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.7.jar wordcount wcinput/ wcoutput
[shaofei@hadoop128 hadoop-2.7.7]$ cat wcoutput/*
hadoop 2
haha 1
helloworld 1
java 4
lll 1
pyfysf 1
python 1
upuptop 1
2 伪分布式运行Hadoop 案例
2.1 启动HDFS并运行MapReduce 程序
1)执行步骤
(1)配置集群
(a)配置:hadoop-env.sh
Linux系统中获取jdk的安装路径:
修改JAVA_HOME 路径:
(b)配置:core-site.xml
(c)配置:hdfs-site.xml
(2)启动集群
(a)格式化namenode(第一次启动时格式化,以后就不要总格式化)
(b)启动namenode
(c)启动datanode
(3)查看集群
(a)查看是否启动成功
(b)查看产生的log日志
(c)web端查看HDFS文件系统
(4)操作集群
(a)在hdfs文件系统上创建一个input文件夹
(b)将测试文件内容上传到文件系统上
(c)查看上传的文件是否正确
(d)运行mapreduce程序
(e)查看输出结果
命令行查看:
浏览器查看
浏览器查看.png
(f)将测试文件内容下载到本地
(g)删除输出结果
代码示例
1)配置集群
配置hadoop-env 里面的JAVA_HOME
[shaofei@hadoop128 hadoop-2.7.7]$ vim etc/hadoop/hadoop-env.sh
# The java implementation to use.
export JAVA_HOME=/opt/module/jdk1.8.0_191
配置core-site.xml
[shaofei@hadoop128 hadoop-2.7.7]$ vim etc/hadoop/core-site.xml
<configuration>
<!-- 指定HDFS中NameNode的地址 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://hadoop128:9000</value>
</property>
<!-- 指定hadoop运行时产生文件的存储目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/module/hadoop-2.7.7/data/tmp</value>
</property>
</configuration>
配置hdfs-site.xml
[shaofei@hadoop128 hadoop-2.7.7]$ vim etc/hadoop/hdfs-site.xml
<configuration>
<!-- 指定HDFS副本的数量 -->
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
</configuration>
2)启动集群
格式化namenode
[shaofei@hadoop128 hadoop-2.7.7]$ bin/hdfs namenode -format
启动namenode
[shaofei@hadoop128 hadoop-2.7.7]$ sbin/hadoop-daemon.sh start namenode
确认是否开启成功
[shaofei@hadoop128 hadoop-2.7.7]$ jps
2323 NameNode
2392 Jps
启动datanode
[shaofei@hadoop128 hadoop-2.7.7]$ sbin/hadoop-daemon.sh start datanode
确认是否开启成功
[shaofei@hadoop128 hadoop-2.7.7]$ jps
2417 DataNode
2323 NameNode
2492 Jps
3)查看集群
查看生成的日志log
[shaofei@hadoop128 hadoop-2.7.7]$ cat logs/hadoop-shaofei-datanode-hadoop128.log
在web端查看HDFS文件系统[ip 为linux服务器ip]
http://hadoop128:50070
http://ip:50070
http://hadoop128:50070/explorer.html#/
4)操作集群
在hdfs文件系统上创建一个wcinput文件夹
[shaofei@hadoop128 hadoop-2.7.7]$ bin/hdfs dfs -mkdir -p /user/shaofei/wcinput
查看是否创建成功
[shaofei@hadoop128 hadoop-2.7.7]$ bin/hdfs dfs -ls /user
复制本地的 wcinput/input.input 到 hdfs系统中的wcinput中 并查看是否上传成功
[shaofei@hadoop128 hadoop-2.7.7]$ bin/hdfs dfs -put wcinput/input.input /user/shaofei/wcinput
[shaofei@hadoop128 hadoop-2.7.7]$ bin/hdfs dfs -ls /user/shaofei/wcinput
执行MapReduce程序
[shaofei@hadoop128 hadoop-2.7.7]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.7.jar wordcount /user/shaofei/wcinput/ /user/shaofei/wcoutput
将结果下载到本地查看
[shaofei@hadoop128 hadoop-2.7.7]$ bin/hdfs dfs -get /user/shaofei/wcoutput
[shaofei@hadoop128 hadoop-2.7.7]$ cat wcoutput/*
在web中查看hdfs系统
/user/shaofei
/user/shaofei/wcinput
/user/shaofei/wcoutput
2.2 YARN上运行MapReduce 程序
1)执行步骤
(1)配置集群
(a)配置yarn-env.sh
配置一下JAVA_HOME
(b)配置yarn-site.xml
(c)配置:mapred-env.sh
配置一下JAVA_HOME
(d)配置: (对mapred-site.xml.template重新命名为) mapred-site.xml
(2)启动集群
(a)启动前必须保证namenode和datanode已经启动
(b)启动resourcemanager
(c)启动nodemanager
(3)集群操作
(a)yarn的浏览器页面查看
http://192.168.1.101:8088/cluster
(b)删除文件系统上的output文件
(c)执行mapreduce程序
(d)查看运行结果
代码示例
1)配置集群
配置yarn-evn.sh中的JAVA_HOME
[shaofei@hadoop128 hadoop-2.7.7]$ vim etc/hadoop/yarn-env.sh
# some Java parameters
export JAVA_HOME=/opt/module/jdk1.8.0_191
配置yarn-site.xml
[shaofei@hadoop128 hadoop-2.7.7]$ vim etc/hadoop/yarn-site.xml
<configuration>
<!-- Site specific YARN configuration properties -->
<!-- reducer获取数据的方式 -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<!-- 指定YARN的ResourceManager的地址 -->
<property>
<name>yarn.resourcemanager.hostname</name>
<value>hadoop128</value>
</property>
</configuration>
配置mapred-env.sh中的JAVA_HOME
[shaofei@hadoop128 hadoop-2.7.7]$ vim etc/hadoop/mapred-env.sh
export JAVA_HOME=/opt/module/jdk1.8.0_191
对mapred-site.xml.template 重命名
[shaofei@hadoop128 hadoop-2.7.7]$ mv etc/hadoop/mapred-site.xml.template etc/hadoop/mapred-site.xml
配置mapred-site.xml
[shaofei@hadoop128 hadoop-2.7.7]$ vim etc/hadoop/mapred-site.xml
<configuration>
<!-- 指定mr运行在yarn上 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
2)启动集群
启动yarn之前需要确定namenode和datanode是启动状态
[shaofei@hadoop128 hadoop-2.7.7]$ jps
3184 Jps
2417 DataNode
2323 NameNode
启动ResourceManager
[shaofei@hadoop128 hadoop-2.7.7]$ sbin/yarn-daemon.sh start resourcemanager
启动NodeManager
[shaofei@hadoop128 hadoop-2.7.7]$ sbin/yarn-daemon.sh start nodemanager
查看启动程序列表
[shaofei@hadoop128 hadoop-2.7.7]$ jps
2417 DataNode
3217 ResourceManager
3587 Jps
2323 NameNode
3465 NodeManager
在浏览器中查看
http://[ip]:8088/cluster
2)执行MapReduce
删除文件系统上的output文件
[shaofei@hadoop128 hadoop-2.7.7]$ bin/hdfs dfs -rm -r /user/shaofei/wcoutput
执行mapreduce程序
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.7.jar wordcount /user/shaofei/wcinput /user/shaofei/wcoutput
查看运行结果
[shaofei@hadoop128 hadoop-2.7.7]$ hadoop fs -cat /user/shaofei/wcoutput/*
3 完全分布式
集群部署规划
– | hadoop132 | hadoop133 | hadoop134 |
---|---|---|---|
HDFS | NameNode、DataNode | DataNode | SecondaryNameNode、DataNode |
YARN | NodeManager | ResourceManager、NodeManager | NodeManager |
配置文件
core-site.xml
<!-- 指定 HDFS 中 NameNode 的地址 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://hadoop132:9000</value>
</property>
<!-- 指定 hadoop 运行时产生文件的存储目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/module/hadoop-2.7.2/data/tmp</value>
</property>
export JAVA_HOME=/opt/module/jdk1.8.0_144
hdfs-site.xml
<configuration>
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>hadoop134:50090</value>
</property>
</configuration>
slaves
hadoop132
hadoop133
hadoop134
yarn
yarn-env.sh
export JAVA_HOME=/opt/module/jdk1.8.0_144
yarn-site.xml
<configuration>
<!-- reducer 获取数据的方式 -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<!-- 指定 YARN 的 ResourceManager 的地址 -->
<property>
<name>yarn.resourcemanager.hostname</name>
<value>hadoop133</value>
</property>
</configuration>
mapreduce
mapred-env.sh
export JAVA_HOME=/opt/module/jdk1.8.0_144
mapred-site.xml
<configuration>
<!-- 指定 mr 运行在 yarn 上 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
集群同步以上配置文件
启动集群
如果集群是第一次启动,需要格式化 namenode
$ bin/hdfs namenode -format
$ sbin/start-dfs.sh
第二台机器上启动yarn
$ sbin/start-yarn.sh
注意:Namenode 和 ResourceManger 如果不是同一台机器,不能在 NameNode 上启动 yarn,应该在 ResouceManager 所在的机器上启动 yarn。
本博客仅为博主学习总结,感谢各大网络平台的资料。蟹蟹!!
hadoop的运行模式的更多相关文章
- hadoop本地运行模式调试
一:简介 最近学习hadoop本地运行模式,在运行期间遇到一些问题,记录下来备用:以运行hadoop下wordcount为例子. hadoop程序是在集群运行还是在本地运行取决于下面两个参数的设置,第 ...
- Hadoop之运行模式
Hadoop运行模式包括:本地模式.伪分布式以及完全分布式模式. 一.本地运行模式 1.官方Grep案例 1)在hadoop-2.7.2目录下创建一个 input 文件夹 [hadoop@hadoop ...
- 大数据-Hadoop 本地运行模式
Grep案例 1. 创建在hadoop-2.7.2文件下面创建一个input文件夹 [atguigu@hadoop101 hadoop-2.7.2]$ mkdir input 2. 将Hadoop的x ...
- Hadoop系列004-Hadoop运行模式(上)
title: Hadoop系列004-Hadoop运行模式(上) date: 2018-11-20 14:27:00 updated: 2018-11-20 14:27:00 categories: ...
- Hadoop系列005-Hadoop运行模式(下)
本人微信公众号,欢迎扫码关注! Hadoop运行模式(下) 2.3.完全分布式部署Hadoop 1)分析: 1)准备3台客户机(关闭防火墙.静态ip.主机名称) 2)安装jdk 3)配置环境变量 4) ...
- 大数据学习之Hadoop运行模式
一.Hadoop运行模式 (1)本地模式(默认模式): 不需要启用单独进程,直接可以运行,测试和开发时使用. (2)伪分布式模式: 等同于完全分布式,只有一个节点. (3)完全分布式模式: 多个节点一 ...
- ubuntu上Hadoop三种运行模式的部署
Hadoop集群支持三种运行模式:单机模式.伪分布式模式,全分布式模式,下面介绍下在Ubuntu下的部署 (1)单机模式 默认情况下,Hadoop被配置成一个以非分布式模式运行的独立JAVA进程,适合 ...
- Hadoop运行模式
Hadoop运行模式 (1)本地模式(默认模式): 不需要启用单独进程,直接可以运行,测试和开发时使用. 即在一台机器上进行操作,仅为单机版. 本地运行Hadoop官方MapReduce案例 操作命令 ...
- 啃掉Hadoop系列笔记(03)-Hadoop运行模式之本地模式
Hadoop的本地模式为Hadoop的默认模式,不需要启用单独进程,直接可以运行,测试和开发时使用. 在<啃掉Hadoop系列笔记(02)-Hadoop运行环境搭建>中若环境搭建成功,则直 ...
随机推荐
- 80%的岗位是没有太多能力上的要求的(少部分聪明的人开始觉醒,这部分一定是那些主动追求、主动学习的人;30岁现象能区分真正专业和不学无术的人)good
不要沦陷程序员的30岁问题 热门> 就是学习能力和工作热情态度的问题. 我之前也跟作者一样思考过这个问题,答案是否定的. 在知识积累的行业,年纪越大,越吃香,比如金融,医学,IT.就怕3 ...
- 21 步助你成为成功的 Web 开发者(激情不是被动的:它是一种对行动起来的追求)
随着 Web 开发产业的爆发式发展,许多人会问这样的问题:我如何才能成为一名 Web 开发者?我认为这是一个错误的提问.问题应该是:我如何才能成为一名成功的 Web 开发者? 能提出这样的问题很重要, ...
- 屏蔽按CapsLock键切换到大写时,编辑框自动弹出的提示(UnregisterClass(TOOLTIPS_CLASS)后,重新设置WndProc并注意返回值)
WNDPROC OldProc; LPCTSTR lpStr = TEXT("保持大写锁定打开可能会使您错误输入密码"); LRESULT CALLBACK WindowProc( ...
- C语言实现常用数据结构——队列
#include<stdio.h> #include<stdlib.h> #define MAX_SIZE 10 /* 用一个动态数组来实现队列 */ typedef stru ...
- asp.net core 系列之Response caching 之 Distributed caching(3)
这篇文章讲解分布式缓存,即 Distributed caching in ASP.NET Core Distributed caching in ASP.NET Core 分布式缓存是可以在多个应用服 ...
- Ansible常用模块介绍
ansible < HOST-PATTERN > [ -f FORKS ] [ -m MOUDULE ] [ -a "ARGS" ] [ -o ] MOUDULE: p ...
- 原创-使用pywinauto进行dotnet的winform程序控制(一)
pywinauto自动化控制win32的ui的程序,网上有好多的教程.但是操作dotnet写的winform教程,就少之又少.今天我就来分享我的pywinauto操作dotnet的winform的研究 ...
- Redis---学习笔记(更新中)
一.基本命令 #查看所有键 keys * #查看指定键 keys key #查看模糊键 keys ke* keys ke? keys ke[a-z] keys ke\? #判断键是否存在 exists ...
- Consul&Nginx&Registrator&ConsulTemplate部署高可用负载均衡
1. Consul Server 创建consul server虚拟主机 docker-machine create consul 出现如下内容即创建成功 Running pre-create che ...
- SSM(三)Mybatis动态SQL
1.查询语句,where: <resultMap id="xxx" type="xx..Student" autoMapping="false& ...