Problem Statement

In a 1 million by 1 million grid, the coordinates of each grid square are (x, y) with 0 <= x, y < 10^6.

We start at the source square and want to reach the target square.  Each move, we can walk to a 4-directionally adjacent square in the grid that isn't in the given list of blocked squares.

Return true if and only if it is possible to reach the target square through a sequence of moves.

Example 1:

Input: blocked = [[0,1],[1,0]], source = [0,0], target = [0,2]
Output: false
Explanation:
The target square is inaccessible starting from the source square, because we can't walk outside the grid.

Example 2:

Input: blocked = [], source = [0,0], target = [999999,999999]
Output: true
Explanation:
Because there are no blocked cells, it's possible to reach the target square.

Note:

  1. 0 <= blocked.length <= 200
  2. blocked[i].length == 2
  3. 0 <= blocked[i][j] < 10^6
  4. source.length == target.length == 2
  5. 0 <= source[i][j], target[i][j] < 10^6
  6. source != target

Hints

  • If we become stuck, there's either a loop around the source or around the target.
  • If there is a loop around say, the source, what is the maximum number of squares it can have?

Problem link

Video Tutorial

You can find the detailed Youtube video tutorial here

国内:B站的视频戳这里

Thought Process

At first, I am puzzled why this problem would be a hard one. It seems simply applying a BFS would get the answer. So here we go.

Brute force, simple BFS

Of course it will hit memory limit because I am allocating a 2-dimensional visited array. Assume boolean is 8 bit -> 1B, 1 Million * 1 Million = 1TB, OMG, immediately using a set instead.

P.S. fun fact, you can use this method to test how much memory leetcode allocate to this problem, you can use binary search and memory is around 300MB

However, this would start hitting Time Limit Exception. Now I begin to notice a few constrains, e.g., the block size is only 200 while the grid is 1M*1M. Simply going from source to target worst case would cause a timeout.

Next thought would be does it help if we sort the block array? While we are doing the BFS, if the block is already larger/smaller than the max/min of the block, we can early stop. However, this won't help if we simply place a block near the target. Also, this would be a nightmare to implement.

Check block loops on source and target

Following the two hints, it would be natural to come up with this idea. Given such huge contrast between the block size (0,200) and the grid size (1M, 1M), all we need to do is to check if there is any loops built by block on source and target b/c if there is a loop, we cannot explore outside of the loop. However, notice if target and source are in the same loop, then we are fine.

There are two ways to early stop this loop checking. One way is to count the BFS steps, the other way is to follow the hints, given 200 blocks, what's the max area it can cover. Given the length 200, Fig 2 in the below graph can result in the largest area. Therefore, we can early terminate the BFS search once we covered more than 19900 blocks. (We can relax this a bit to 20000, doesn't matter)

  • Fig 1 area = 100 * 100 = 10000
  • Fig 2 area = 1 + 2 + 3 + ... + 199 = (1+199)*199/2 = 19900
  • Fig 3 area = 1 * 200 = 200
  • Fig 4 area = 790 (2*Pi*R = 100, thus R = 15.92, Pi * R^2 = 790 )

Solutions

Brute force, simple BFS

 private final int[] xDirection = {1, 0, -1, 0};
private final int[] yDirection = {0, -1, 0, 1};
private final int ONE_MILLION = 1000000; public boolean isEscapePossible(int[][] blocked, int[] source, int[] target) {
if (blocked == null || source == null || target == null) {
return false;
}
Set<String> blockLookup = this.indexBlockedMatrixToSet(blocked); int m = ONE_MILLION;
int n = ONE_MILLION; Set<String> visited = new HashSet<>(); Queue<String> queue = new LinkedList<>(); String sourceString = source[0] + "," + source[1];
queue.offer(sourceString);
visited.add(sourceString); while (!queue.isEmpty()) {
String[] curBlock = queue.poll().split(",");
int curX = Integer.parseInt(curBlock[0]);
int curY = Integer.parseInt(curBlock[1]); if (curX == target[0] && curY == target[1]) {
return true;
} for (int i = 0; i < 4; i++) {
int nextX = curX + xDirection[i];
int nextY = curY + yDirection[i];
if (this.shouldExplore(nextX, nextY, ONE_MILLION, ONE_MILLION, blockLookup, visited)) {
String nextKey = nextX + "," + nextY;
visited.add(nextKey);
queue.offer(nextKey);
}
}
} return false;
} private boolean shouldExplore(
int x,
int y,
int row,
int col,
Set<String> blockLookup,
Set<String> visited) {
if (!(x >= 0 && x < row && y >=0 && y < col)) {
return false;
} String index = x + "," + y;
if (visited.contains(index)) {
return false;
}
if (blockLookup.contains(index)) {
return false;
} return true;
} private Set<String> indexBlockedMatrixToSet(int[][] blocked) {
Set<String> lookup = new HashSet<>(); for (int i = 0; i < blocked.length; i++) {
int x = blocked[i][0];
int y = blocked[i][1];
String index = x + "," + y;
lookup.add(index);
}
return lookup;
}

Time Complexity: O(N), N = 1M * 1M, essentially need to cover the entire huge grid

Space Complexity: O(N), N = 1M*1M, essentially all the nodes need to be put to visited set

Check block loops on source and target

 private final int[] xDirection = {1, 0, -1, 0};
private final int[] yDirection = {0, -1, 0, 1};
private final int ONE_MILLION = 1000000;
private final int MAX_COUNT_THRESHOLD = 20000; public boolean isEscapePossible(int[][] blocked, int[] source, int[] target) {
if (blocked == null || source == null || target == null) {
return false;
} Set<String> blockLookup = this.indexBlockedMatrixToSet(blocked);
boolean isSourceLoop = this.isLoopAroundPoint(source, target, blockLookup);
if (isSourceLoop) {
return false;
} boolean isTargetLoop = this.isLoopAroundPoint(target, source, blockLookup);
if (isTargetLoop) {
return false;
} return true;
} private boolean isLoopAroundPoint(int[] source, int[] target, Set<String> blockLookup) {
int count = 0; Set<String> visited = new HashSet<>();
Queue<String> queue = new LinkedList<>(); String index = source[0] + "," + source[1];
queue.offer(index);
visited.add(index); while (!queue.isEmpty()) {
String[] curBlock = queue.poll().split(",");
int curX = Integer.parseInt(curBlock[0]);
int curY = Integer.parseInt(curBlock[1]); // here think about
if (count >= MAX_COUNT_THRESHOLD) {
return false;
} if (curX == target[0] && curY == target[1]) {
return false;
} for (int i = 0; i < 4; i++) {
int nextX = curX + xDirection[i];
int nextY = curY + yDirection[i]; if (this.shouldExplore(nextX, nextY, ONE_MILLION, ONE_MILLION, blockLookup, visited)) {
String nextKey = nextX + "," + nextY;
count++;
visited.add(nextKey);
queue.offer(nextKey);
}
}
} return true;
} private boolean shouldExplore(
int x,
int y,
int row,
int col,
Set<String> blockLookup,
Set<String> visited) {
if (!(x >= 0 && x < row && y >=0 && y < col)) {
return false;
} String index = x + "," + y;
if (visited.contains(index)) {
return false;
}
if (blockLookup.contains(index)) {
return false;
} return true;
} private Set<String> indexBlockedMatrixToSet(int[][] blocked) {
Set<String> lookup = new HashSet<>(); for (int i = 0; i < blocked.length; i++) {
int x = blocked[i][0];
int y = blocked[i][1];
String index = x + "," + y;
lookup.add(index);
}
return lookup;
}

Time Complexity: O(N), N in terms of block size

Space Complexity: O(N), N in terms of block size

References

Baozi Leetcode solution 1036: Escape a Large Maze的更多相关文章

  1. [Swift]LeetCode1036.逃离大迷宫 | Escape a Large Maze

    In a 1 million by 1 million grid, the coordinates of each grid square are (x, y) with 0 <= x, y & ...

  2. Baozi Leetcode Solution 205: Isomorphic Strings

    Problem Statement Given two strings s and t, determine if they are isomorphic. Two strings are isomo ...

  3. Baozi Leetcode Solution 290: Word Pattern

    Problem Statement Given a pattern and a string str, find if str follows the same pattern. Here follo ...

  4. leetcode solution cracked tutorial

    leetcode solution cracked tutorial problemset https://leetcode.com/problemset/all/ Top Interview Que ...

  5. 【LeetCode】789. Escape The Ghosts 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  6. 【LeetCode】830. Positions of Large Groups 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  7. 73th LeetCode Weekly Contest Escape The Ghosts

    You are playing a simplified Pacman game. You start at the point (0, 0), and your destination is(tar ...

  8. Leetcode solution 291: Word Pattern II

    Problem Statement Given a pattern and a string str, find if str follows the same pattern. Here follo ...

  9. Leetcode solution 227: Basic Calculator II

    Problem Statement Implement a basic calculator to evaluate a simple expression string. The expressio ...

随机推荐

  1. Android零基础入门第87节:Fragment添加、删除、替换

    前面一起学习了Fragment的创建和加载,以及其生命周期方法,那么接下来进一步来学习Fragment的具体使用,本期先来学习Fragment添加.删除.替换. 一.概述 在前面的学习中,特别是动态加 ...

  2. Android CTS Test failed to run to conmpletion 测试超时问题

    引用“Android cts all pass 全攻略”里面的一段话: ❀ testcase timeout 测试某个testcase的时候一直出现 “........”,迟迟没有pass或者fail ...

  3. FireUI live Preview使用方法-Berlin

    这是可以让开发者事先预览 mobile 画面的作法 1.先确定 Berlin IDE  Tools\Option\Form Designer 中 FireUI live Preview   broad ...

  4. Java Date Calendar DateFormat Details

    From https://www.ntu.edu.sg/home/ehchua/programming/java/DateTimeCalendar.html Date and Time - Creat ...

  5. 转载 《TypeScript 类型定义 DefinitelyTyped》

    快速使用Romanysoft LAB的技术实现 HTML 开发Mac OS App,并销售到苹果应用商店中.   <HTML开发Mac OS App 视频教程> 土豆网同步更新:http: ...

  6. python的实用函数

    >>> file=open('txt.txt','a') >>> print >> file,'hello,world' >>> fi ...

  7. Python连载15-高阶函数&map映射

    一.高阶函数 1.定义:把函数作为参数使用的函数叫做高阶函数 (1)变量可以设置为赋值 a=100 b=a (2)函数名称就是一个变量 def FunA(): print("FunA()&q ...

  8. YARN分析系列之二 -- Hadoop YARN各个自模块说明

    先做如下声明,本代码版本是基于 3.1.2 版本. 其实,我们自己在写代码的时候,会有意识地将比较大的功能项独立成包,独立成module, 独立成项目,项目之间的关系既容易阅读理解,又便于管理. 如下 ...

  9. Hexo+NexT(一):在Windows下安装Hexo+NexT及搭建博客

    阅读本篇之前,假定读者已经有了Node.js的基础,如需要补充Node.js知识的,请自行百度. Hexo是在Node.js框架下的一个项目,利用Node.js提供的强大功能,完成从Markdown到 ...

  10. feign之间传递oauth2-token的问题和解决

    在微服务架构里,服务与服务之间的调用一般用feign就可以实现,它是一种可视化的rpc,并且集成了ribbon的负载均衡能力,所以很受欢迎. 授权服务 在授权服务里,用户通过用户名密码,或者手机和验证 ...