epoll使用详解:epoll_create、epoll_ctl、epoll_wait、close
epoll - I/O event notification facility
在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。
相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linux/posix_types.h头文件有这样的声明:
#define __FD_SETSIZE 1024
表示select最多同时监听1024个fd,当然,可以通过修改头文件再重编译内核来扩大这个数目,但这似乎并不治本。
epoll的接口非常简单,一共就三个函数:
1. int epoll_create(int size);
创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大。这个参数不同于select()中的第一个参数,给出最大监听的fd+1的值。需要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。
注意:size参数只是告诉内核这个 epoll对象会处理的事件大致数目,而不是能够处理的事件的最大个数。在 Linux最新的一些内核版本的实现中,这个 size参数没有任何意义。
2. int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
epoll的事件注册函数,epoll_ctl向 epoll对象中添加、修改或者删除感兴趣的事件,返回0表示成功,否则返回–1,此时需要根据errno错误码判断错误类型。
它不同与select()是在监听事件时告诉内核要监听什么类型的事件,而是在这里先注册要监听的事件类型。
epoll_wait方法返回的事件必然是通过 epoll_ctl添加到 epoll中的。
第一个参数是epoll_create()的返回值,第二个参数表示动作,用三个宏来表示:
EPOLL_CTL_ADD:注册新的fd到epfd中;
EPOLL_CTL_MOD:修改已经注册的fd的监听事件;
EPOLL_CTL_DEL:从epfd中删除一个fd;
第三个参数是需要监听的fd,第四个参数是告诉内核需要监听什么事,struct epoll_event结构如下:
typedef union epoll_data {
void *ptr;
int fd;
__uint32_t u32;
__uint64_t u64;
} epoll_data_t; struct epoll_event {
__uint32_t events; /* Epoll events */
epoll_data_t data; /* User data variable */
};
events可以是以下几个宏的集合:
EPOLLIN :表示对应的文件描述符可以读(包括对端SOCKET正常关闭);
EPOLLOUT:表示对应的文件描述符可以写;
EPOLLPRI:表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);
EPOLLERR:表示对应的文件描述符发生错误;
EPOLLHUP:表示对应的文件描述符被挂断;
EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。
EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里
3. int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
等待事件的产生,类似于select()调用。参数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个 maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。该函数返回需要处理的事件数目,如返回0表示已超时。如果返回–1,则表示出现错误,需要检查 errno错误码判断错误类型。
第1个参数 epfd是 epoll的描述符。
第2个参数 events则是分配好的 epoll_event结构体数组,epoll将会把发生的事件复制到 events数组中(events不可以是空指针,内核只负责把数据复制到这个 events数组中,不会去帮助我们在用户态中分配内存。内核这种做法效率很高)。
第3个参数 maxevents表示本次可以返回的最大事件数目,通常 maxevents参数与预分配的events数组的大小是相等的。
第4个参数 timeout表示在没有检测到事件发生时最多等待的时间(单位为毫秒),如果 timeout为0,则表示 epoll_wait在 rdllist链表中为空,立刻返回,不会等待。
4、关于ET、LT两种工作模式:
epoll有两种工作模式:LT(水平触发)模式和ET(边缘触发)模式。
默认情况下,epoll采用 LT模式工作,这时可以处理阻塞和非阻塞套接字,而上表中的 EPOLLET表示可以将一个事件改为 ET模式。ET模式的效率要比 LT模式高,它只支持非阻塞套接字。
ET模式与LT模式的区别在于:
当一个新的事件到来时,ET模式下当然可以从 epoll_wait调用中获取到这个事件,可是如果这次没有把这个事件对应的套接字缓冲区处理完,在这个套接字没有新的事件再次到来时,在 ET模式下是无法再次从 epoll_wait调用中获取这个事件的;而 LT模式则相反,只要一个事件对应的套接字缓冲区还有数据,就总能从 epoll_wait中获取这个事件。因此,在 LT模式下开发基于 epoll的应用要简单一些,不太容易出错,而在 ET模式下事件发生时,如果没有彻底地将缓冲区数据处理完,则会导致缓冲区中的用户请求得不到响应。默认情况下,Nginx是通过 ET模式使用 epoll的。
结论:
ET模式仅当状态发生变化的时候才获得通知,这里所谓的状态的变化并不包括缓冲区中还有未处理的数据,也就是说,如果要采用ET模式,需要一直read/write直到出错为止,很多人反映为什么采用ET模式只接收了一部分数据就再也得不到通知了,大多因为这样;而LT模式是只要有数据没有处理就会一直通知下去的.
那么究竟如何来使用epoll呢?其实非常简单。
通过在包含一个头文件#include <sys/epoll.h> 以及几个简单的API将可以大大的提高你的网络服务器的支持人数。
首先通过create_epoll(int maxfds)来创建一个epoll的句柄,其中maxfds为你epoll所支持的最大句柄数。这个函数会返回一个新的epoll句柄,之后的所有操作将通过这个句柄来进行操作。在用完之后,记得用close()来关闭这个创建出来的epoll句柄。
之后在你的网络主循环里面,每一帧的调用epoll_wait(int epfd, epoll_event events, int max events, int timeout)来查询所有的网络接口,看哪一个可以读,哪一个可以写了。基本的语法为:
nfds = epoll_wait(kdpfd, events, maxevents, -1);
其中kdpfd为用epoll_create创建之后的句柄,events是一个epoll_event*的指针,当epoll_wait这个函数操作成功之后,epoll_events里面将储存所有的读写事件。max_events是当前需要监听的所有socket句柄数。最后一个timeout是 epoll_wait的超时,为0的时候表示马上返回,为-1的时候表示一直等下去,直到有事件范围,为任意正整数的时候表示等这么长的时间,如果一直没有事件,则范围。一般如果网络主循环是单独的线程的话,可以用-1来等,这样可以保证一些效率,如果是和主逻辑在同一个线程的话,则可以用0来保证主循环的效率。
epoll_wait范围之后应该是一个循环,遍利所有的事件。
几乎所有的epoll程序都使用下面的框架:
for( ; ; )
{
nfds = epoll_wait(epfd,events,,);
for(i=;i<nfds;++i)
{
if(events[i].data.fd==listenfd) //有新的连接
{
connfd = accept(listenfd,(sockaddr *)&clientaddr, &clilen); //accept这个连接
ev.data.fd=connfd;
ev.events=EPOLLIN|EPOLLET;
epoll_ctl(epfd,EPOLL_CTL_ADD,connfd,&ev); //将新的fd添加到epoll的监听队列中
}
else if( events[i].events&EPOLLIN ) //接收到数据,读socket
{
n = read(sockfd, line, MAXLINE)) < //读
ev.data.ptr = md; //md为自定义类型,添加数据
ev.events=EPOLLOUT|EPOLLET;
epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);//修改标识符,等待下一个循环时发送数据,异步处理的精髓
}
else if(events[i].events&EPOLLOUT) //有数据待发送,写socket
{
struct myepoll_data* md = (myepoll_data*)events[i].data.ptr; //取数据
sockfd = md->fd;
send( sockfd, md->ptr, strlen((char*)md->ptr), ); //发送数据
ev.data.fd=sockfd;
ev.events=EPOLLIN|EPOLLET;
epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev); //修改标识符,等待下一个循环时接收数据
}
else
{
//其他的处理
}
}
}
下面给出一个完整的服务器端例子:
#include <iostream>
#include <sys/socket.h>
#include <sys/epoll.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h> using namespace std; #define MAXLINE 5
#define OPEN_MAX 100
#define LISTENQ 20
#define SERV_PORT 5000
#define INFTIM 1000 void setnonblocking(int sock)
{
int opts;
opts=fcntl(sock,F_GETFL);
if(opts<)
{
perror("fcntl(sock,GETFL)");
exit();
}
opts = opts|O_NONBLOCK;
if(fcntl(sock,F_SETFL,opts)<)
{
perror("fcntl(sock,SETFL,opts)");
exit();
}
} int main(int argc, char* argv[])
{
int i, maxi, listenfd, connfd, sockfd,epfd,nfds, portnumber;
ssize_t n;
char line[MAXLINE];
socklen_t clilen; if ( == argc )
{
if( (portnumber = atoi(argv[])) < )
{
fprintf(stderr,"Usage:%s portnumber/a/n",argv[]);
return ;
}
}
else
{
fprintf(stderr,"Usage:%s portnumber/a/n",argv[]);
return ;
} //声明epoll_event结构体的变量,ev用于注册事件,数组用于回传要处理的事件 struct epoll_event ev,events[];
//生成用于处理accept的epoll专用的文件描述符 epfd=epoll_create();
struct sockaddr_in clientaddr;
struct sockaddr_in serveraddr;
listenfd = socket(AF_INET, SOCK_STREAM, );
//把socket设置为非阻塞方式 //setnonblocking(listenfd); //设置与要处理的事件相关的文件描述符 ev.data.fd=listenfd;
//设置要处理的事件类型 ev.events=EPOLLIN|EPOLLET;
//ev.events=EPOLLIN; //注册epoll事件 epoll_ctl(epfd,EPOLL_CTL_ADD,listenfd,&ev);
bzero(&serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET;
char *local_addr="127.0.0.1";
inet_aton(local_addr,&(serveraddr.sin_addr));//htons(portnumber); serveraddr.sin_port=htons(portnumber);
bind(listenfd,(sockaddr *)&serveraddr, sizeof(serveraddr));
listen(listenfd, LISTENQ);
maxi = ;
for ( ; ; ) {
//等待epoll事件的发生 nfds=epoll_wait(epfd,events,,);
//处理所发生的所有事件 for(i=;i<nfds;++i)
{
if(events[i].data.fd==listenfd)//如果新监测到一个SOCKET用户连接到了绑定的SOCKET端口,建立新的连接。 {
connfd = accept(listenfd,(sockaddr *)&clientaddr, &clilen);
if(connfd<){
perror("connfd<0");
exit();
}
//setnonblocking(connfd); char *str = inet_ntoa(clientaddr.sin_addr);
cout << "accapt a connection from " << str << endl;
//设置用于读操作的文件描述符 ev.data.fd=connfd;
//设置用于注测的读操作事件 ev.events=EPOLLIN|EPOLLET;
//ev.events=EPOLLIN; //注册ev epoll_ctl(epfd,EPOLL_CTL_ADD,connfd,&ev);
}
else if(events[i].events&EPOLLIN)//如果是已经连接的用户,并且收到数据,那么进行读入。 {
cout << "EPOLLIN" << endl;
if ( (sockfd = events[i].data.fd) < )
continue;
if ( (n = read(sockfd, line, MAXLINE)) < ) {
if (errno == ECONNRESET) {
close(sockfd);
events[i].data.fd = -;
} else
std::cout<<"readline error"<<std::endl;
} else if (n == ) {
close(sockfd);
events[i].data.fd = -;
}
line[n] = '/0';
cout << "read " << line << endl;
//设置用于写操作的文件描述符 ev.data.fd=sockfd;
//设置用于注测的写操作事件 ev.events=EPOLLOUT|EPOLLET;
//修改sockfd上要处理的事件为EPOLLOUT //epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev); }
else if(events[i].events&EPOLLOUT) // 如果有数据发送 {
sockfd = events[i].data.fd;
write(sockfd, line, n);
//设置用于读操作的文件描述符 ev.data.fd=sockfd;
//设置用于注测的读操作事件 ev.events=EPOLLIN|EPOLLET;
//修改sockfd上要处理的事件为EPOLIN epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);
}
}
}
return ;
}
转自:https://www.cnblogs.com/fnlingnzb-learner/p/5835573.html
https://baijiahao.baidu.com/s?id=1609693081381106878&wfr=spider&for=pc linux网络编程 epoll具体用法介绍
epoll使用详解:epoll_create、epoll_ctl、epoll_wait、close的更多相关文章
- epoll使用详解(精髓)
epoll使用详解(精髓) epoll - I/O event notification facility 在linux的网络编程中,很长的时间都在使用select来做事件触发.在linux新的内核中 ...
- epoll机制详解
epoll机制详解 大牛的详解 epoll详解 什么是epoll? epoll是为处理大批量句柄而作了改进的poll, 是性能最好的多路I/O就绪通知方法; 只有三个系统调用: epoll_creat ...
- epoll原理详解及epoll反应堆模型
本文转载自epoll原理详解及epoll反应堆模型 导语 设想一个场景:有100万用户同时与一个进程保持着TCP连接,而每一时刻只有几十个或几百个TCP连接是活跃的(接收TCP包),也就是说在每一时刻 ...
- Epoll模型详解
Linux 2.6内核中提高网络I/O性能的新方法-epoll I/O多路复用技术在比较多的TCP网络服务器中有使用,即比较多的用到select函数. 1.为什么select落后 首先,在Lin ...
- epoll使用详解
目录 epoll介绍 Epoll的优点: 1.支持一个进程打开大数目的socket描述符(FD) 2.IO效率不随FD数目增加而线性下降 3.支持边缘触发模式 4.使用mmap加速内核与用户空间的消息 ...
- (转)Epoll模型详解
1. 内核中提高I/O性能的新方法epoll epoll是什么?按照man手册的说法:是为处理大批量句柄而作了改进的poll.要使用epoll只需要这三个系统调 用:epoll_create(2), ...
- IO模型(epoll)--详解-02
写在前面 从事服务端开发,少不了要接触网络编程.epoll作为linux下高性能网络服务器的必备技术至关重要,大部分游戏服务器都使用到这一多路复用技术.文章核心思想是:要让读者清晰明白EPOLL为什么 ...
- EPOLL原理详解(图文并茂)
文章核心思想是: 要清晰明白EPOLL为什么性能好. 本文会从网卡接收数据的流程讲起,串联起CPU中断.操作系统进程调度等知识:再一步步分析阻塞接收数据.select到epoll的进化过程:最后探究e ...
- epoll使用详解(精髓)(转)
epoll - I/O event notification facility 在linux的网络编程中,很长的时间都在使用select来做事件触发.在linux新的内核中,有了一种替换它的机制,就是 ...
随机推荐
- ASP .NET Model
Model是全局变量,一个页面一个 前台 @ModelWebApplication1.Models.Movie; @{ ViewBag.Title = "ModelTest"; } ...
- Visual Studio更改编码格式为“UTF-8”
原文:Visual Studio更改编码格式为"UTF-8" 用VS2015新建了个Python文件,在VS2015打开时中文显示正常, 用Visual Studio Code文本 ...
- ELINK离线编程器版本说明
ELINK离线编程器版本详情,ELinkPROG版本与固件版本须匹配使用! 编程器支持芯片详细列表参见 https://www.cnblogs.com/raswin/p/9303300.html
- SqlServer 复制中将大事务分成小事务分发
原文:SqlServer 复制中将大事务分成小事务分发 在sql server 复制中,当在发布数据库执行1个大事务时,如一次性操作 十万或百万以上的数据.当操作数据在发布数据库执行完成后 ,日志读取 ...
- SQL Server 可更新订阅中有行筛选的同步复制移除项目而不重新初始化所有订阅!
原文:SQL Server 可更新订阅中有行筛选的同步复制移除项目而不重新初始化所有订阅! 在可更新订阅的同步复制中,有行筛选的项目表,移除的时候会提示重新初始化所有的快照并且应用此快照,这将导致所有 ...
- Android零基础入门第29节:善用TableLayout表格布局,事半功倍
原文:Android零基础入门第29节:善用TableLayout表格布局,事半功倍 前面学习了线性布局和相对布局,线性布局虽然方便,但如果遇到控件需要排列整齐的情况就很难达到要求,用相对布局又比较麻 ...
- 让您的应用兼容 Android Oreo
不知不觉Android Oreo已经发布几个月时间了,你的应用开始使用最新平台了吗?在应用迁移过程中是否遇到了一些棘手问题?你的Android应用兼容Oreo如何呢? 我们应该都知道,每一次重大升级, ...
- MongoDB对文档的操作
插入文档 db.COLLECTION_NAME.insert({doc1},{doc2},...) e.g.:db.collection.insert({name:'123',age:12},{nam ...
- UAC就不能一次添加、永久信任吗?
每次都要点击确定,感觉好麻烦. 而且阻碍了某些功能的实现.
- 在Qt工程中加Boost
摘要: Boost是一个很强大的C++库,堪比STL,里面有很多非常优秀的类库.我不多介绍,详情见官网:http://www.boost.org/ 要在我们的Qt工程中把这个库加进去应该怎么做呢?我今 ...