往期回顾

100天搞定机器学习|(Day1-36)

100天搞定机器学习|Day37无公式理解反向传播算法之精髓

上集我们学习了反向传播算法的原理,今天我们深入讲解其中的微积分理论,展示在机器学习中,怎么理解链式法则。

我们从一个最简单的网络讲起,每层只有一个神经元,图上这个网络就是由三个权重和三个偏置决定的,我们的目标是理解代价函数对这些变量有多敏感。这样我们就知道怎么调整这些变量,才能使代价函数下降的最快。

我们先来关注最后两个神经元,我们给最后一个神经元一个上标L,表示它处在第L层。给定一个训练样本,我们把这个最终层激活值要接近的目标叫做y,y的值为0/1。那么这个简易网络对于单个训练样本的代价就等于(a(L)−y)2。对于这个样本,我们把这个代价值标记为C0。

之前讲过,最终层的激活值公式:

换个标记方法:

整个流程就是这样的:

当然了,a(L−1)还可以再向上推一层,不过这不重要。

这些东西都是数字,我们可以想象,每个数字都对应数轴上的一个位置。我们第一个目标是来理解代价函数对权重

的微小变化有多敏感。换句话说,求C0对

的导数。 的微小变化导致 产生变化,然后导致 ,最终影响到cost。

我们把式子拆开,首先求 的变化量比 的变化量,即 关于 的导数;同力考虑 变化量比 的变化量,以及最终的c的变化量比上直接改动 产生的变化量。

这就是链式法则

开始分别求导

这只是包含一个训练样本的代价对 的导数,
总的代价函数是所有训练样本代价的总平均,它对 的导数就要求出这个表达式对每一个训练样本的平均,

这只是梯度向量的一个分量,梯度由代价函数对每一个权重和偏置求导数构成。

当然了,对偏置求导数也是同样的步骤。只要把 替换成

同样的,这里也有反向传播的思想

到此,我们可以方向应用链式法则,来计算代价函数对之前的权重和偏置的敏感程度

到这里,我们可以看每层不止一个神经元的情况了,其实并不复杂太多,只是多写一些下标罢了。

这些方程式和之前每层只有一个神经元的时候本质上一样的

代价函数也类似

不同的是代价函数对(L-1)层激活值的导数
因为此时,激活值可以通过不同的途径影响cost function,

只要计算出倒数第二层代价函数对激活值的敏感度,接下来重复上述过程就行了。至此,反向传播介绍完毕。

100天搞定机器学习|day38 反向传播算法推导的更多相关文章

  1. 100天搞定机器学习|day37 无公式理解反向传播算法之精髓

     100天搞定机器学习(Day1-34) 100天搞定机器学习|Day35 深度学习之神经网络的结构 100天搞定机器学习|Day36 深度学习之梯度下降算法 本篇为100天搞定机器学习之第37天,亦 ...

  2. 100天搞定机器学习|Day7 K-NN

    最近事情无比之多,换了工作.组队参加了一个比赛.和朋友搞了一些小项目,公号荒废许久.坚持是多么重要,又是多么艰难,目前事情都告一段落,我们继续100天搞定机器学习系列.想要继续做这个是因为,一方面在具 ...

  3. 100天搞定机器学习|Day11 实现KNN

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  4. 100天搞定机器学习|Day8 逻辑回归的数学原理

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  5. 100天搞定机器学习|Day9-12 支持向量机

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  6. 100天搞定机器学习|Day16 通过内核技巧实现SVM

    前情回顾 机器学习100天|Day1数据预处理100天搞定机器学习|Day2简单线性回归分析100天搞定机器学习|Day3多元线性回归100天搞定机器学习|Day4-6 逻辑回归100天搞定机器学习| ...

  7. 100天搞定机器学习|Day17-18 神奇的逻辑回归

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  8. 100天搞定机器学习|Day19-20 加州理工学院公开课:机器学习与数据挖掘

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  9. 100天搞定机器学习|Day21 Beautiful Soup

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

随机推荐

  1. idea下maven命令打包不同配置

    1. 场景描述 不知道大家有没有遇到过?Idea集成的maven,在切换不同环境配置的时候,有时候反应很慢,还存在切换后打包还是原配置的情况. 2. 问题解决 通过在idea下执行maven命令进行切 ...

  2. C语言指针专题——如何理解指针

    本文为原创,欢迎转发! 最近在研读C primer plus 5版中文版,老外写的,还是很经典的,推荐给读者们,有需要的朋友可以在这里购买:C primer plus 5版中文版 指针,传说中是C语言 ...

  3. 个人永久性免费-Excel催化剂功能第56波-获取Excel对象属性相关自定义函数

    之前零散开发过一些自定义函数获取Excel对象属性,此次再细细地把有价值的属性都一一给开发完成,某些场景下,有这些小函数还是可以比较方便地实现一些通过Excel界面没法轻松获取到的信息. 修复与更新 ...

  4. mui.storage 将数据持久化到本地

    在一个用mui做得app中,要求把历史记录放在本地(感觉...无法言喻的sd),但最终还是做了,以下来记录本次的学习到的内容 mui.plusReady(function() { //这里是一开始定义 ...

  5. [PTA] 数据结构与算法题目集 6-2 顺序表操作集

    //创建并返回一个空的线性表: List MakeEmpty() { List L; L = (List)malloc(sizeof(struct LNode)); L->Last = -1; ...

  6. HttpWebRequest的使用之Get和Post的差别(C#)

    这两天做的是通过一个HttpWebRequest将采集地址发送到服务端,服务端会返回一个JSON格式的字符串,然后我这边再对这个JSON进行反序列化,得到我想要的数据.在这篇文章里我简单介绍一下Htt ...

  7. 重复造轮子系列——基于Ocelot实现类似支付宝接口模式的网关

    重复造轮子系列——基于Ocelot实现类似支付宝接口模式的网关 引言 重复造轮子系列是自己平时的一些总结.有的轮子依赖社区提供的轮子为基础,这里把使用过程的一些觉得有意思的做个分享.有些思路或者方法在 ...

  8. asn1 学习笔记

    语法 定义 Name ::= type 定义一个名称为“Name”的元素 它是一个给定ASN.1类型“Type”的实例 MyName ::= IA5String //IA5String(类似于ASCI ...

  9. 深入学习OpenCV检测及分割图像的目标区域

    准备1:OpenCV常用图片转换技巧 在进行计算机视觉模型训练前,我们经常会用到图像增强的技巧来获取更多的样本,但是有些深度学习框架中的方法对图像的变换方式可能并不满足我们的需求,所以掌握OpenCV ...

  10. 从零开发一款自己的小程序UI组件库(一)

    写在前面:有开发过小程序的朋友肯定知道组件化开发的特性,高内聚与低耦合.使用已有的UI组件库,诸如:vantUI-weapp.minUI-weapp等UI组件库的诞生使我们的开发速度大大的加快,丰富的 ...