用Java实现二叉查找树
二叉查找树的实现
1. 原理
二叉查找树,又称为二叉排序树、二叉搜索树。对于树中每一个节点X,它的左子树中所有项的值小于X中的项,而它的右子树中所有项的值大于X中的项。二叉查找树的平均深度为O(log N),搜索元素的时间复杂度也是O(log N)。是两种库集合类TreeSet、TreeMap实现的基础。
2. public API
void makeEmpty( ) --> 置空
boolean isEmpty( ) --> 判空
AnyType findMin( ) --> 寻找最小值
AnyType findMax( ) --> 寻找最大值
boolean contains( x ) --> 是否存在元素x
void insert( x ) --> 插入元素x
void remove( x ) --> 删除元素x
void printTree( ) --> 遍历二叉树
3. 核心思想图解:递归
!寻找最小值
此处用递归实现:
!寻找最大值
此处用非递归实现,也可以用递归实现:
!是否存在元素x
从root开始往下找,找到含有项X的节点,则此操作返回true,没有找到则返回false。
!插入元素x
从root开始往下找到合适的插入位置,然后插入。
!删除元素x
从root开始往下找到元素x,找到则删除,并且处理好后续工作。
4. BinarySearchTree代码实现
/**
* @author: wenhx
* @date: Created in 2019/10/8 19:41 (之前)
* @description: 二叉查找树的实现
*/
public class BinarySearchTree<AnyType extends Comparable<? super AnyType>> {
/**
* 树的根节点
*/
private BinaryNode<AnyType> root;
/**
* 定义树的节点(内部类)
*/
private static class BinaryNode<AnyType> {
AnyType element; // 元素值
BinaryNode<AnyType> left; // 左孩子
BinaryNode<AnyType> right; // 右孩子
// 节点的构造器:初始化一个树的节点
BinaryNode(AnyType theElement) {
this(theElement, null, null);
}
BinaryNode(AnyType theElement, BinaryNode<AnyType> lt, BinaryNode<AnyType> rt) {
element = theElement;
left = lt;
right = rt;
}
}
/**
* 二叉排序树的构造器:初始化根节点
*/
public BinarySearchTree() {
root = null;
}
/**
* 置空
*/
public void makeEmpty() {
root = null;
}
/**
* 判空
*/
public boolean isEmpty() {
return root == null;
}
/**
* 寻找最小值
*/
public AnyType findMin() {
if (isEmpty()) {
throw new RuntimeException();
}
return findMin(root).element;
}
/**
* 寻找最大值
*/
public AnyType findMax() {
if (isEmpty()) {
throw new RuntimeException();
}
return findMax(root).element;
}
/**
* 是否存在元素x
*/
public boolean contains(AnyType x) {
return contains(x, root);
}
/**
* 插入元素x
*/
public void insert(AnyType x) {
root = insert(x, root);
}
/**
* 删除元素x
*/
public void remove(AnyType x) {
root = remove(x, root);
}
/**
* 遍历此二叉树
*/
public void printTree() {
if (isEmpty()) {
System.out.println("Empty tree");
} else {
printTree(root);
}
}
/**
* 寻找最小值(内部方法):此处用递归实现
*/
private BinaryNode<AnyType> findMin(BinaryNode<AnyType> t) {
if (t == null) {
return null;
} else if (t.left == null) {
return t;
}
return findMin(t.left);
}
/**
* 寻找最大值(内部方法):此处用非递归实现
*/
private BinaryNode<AnyType> findMax(BinaryNode<AnyType> t) {
if (t != null) {
while (t.right != null) {
t = t.right;
}
}
return t;
}
/**
* 是否存在元素x(内部方法)
*/
private boolean contains(AnyType x, BinaryNode<AnyType> t) {
/**
* 跳出递归的条件
*/
if (t == null) {
return false;
}
/**
* 如果x小于节点值,则递归到左孩子;
* 如果x大于节点值,则递归到右孩子;
* 如果x等于节点值,则找到。
*/
int compareResult = x.compareTo(t.element);
if (compareResult < 0) {
return contains(x, t.left);
} else if (compareResult > 0) {
return contains(x, t.right);
} else {
return true;
}
}
/**
* 插入元素x(内部方法)
*/
private BinaryNode<AnyType> insert(AnyType x, BinaryNode<AnyType> t) {
/**
* 跳出递归的条件
*/
if (t == null) {
return new BinaryNode<>(x, null, null);
}
/**
* 如果x小于节点值,则递归到左孩子;
* 如果x大于节点值,则递归到右孩子;
* 如果x等于节点值,则说明已有元素x,无需操作。
*/
int compareResult = x.compareTo(t.element);
if (compareResult < 0) {
t.left = insert(x, t.left);
} else if (compareResult > 0) {
t.right = insert(x, t.right);
} else {
}
return t;
}
/**
* 删除元素x(内部方法)
*/
private BinaryNode<AnyType> remove(AnyType x, BinaryNode<AnyType> t) {
/**
* 跳出递归的条件
*/
if (t == null) {
return t; // Item not found; do nothing
}
/**
* 如果x小于节点值,则递归到左孩子;
* 如果x大于节点值,则递归到右孩子;
* 如果x等于节点值,则要删除此节点。
*/
int compareResult = x.compareTo(t.element);
if (compareResult < 0) {
t.left = remove(x, t.left);
} else if (compareResult > 0) {
t.right = remove(x, t.right);
} else if (t.left != null && t.right != null) {
// 要删除的节点有两个孩子(可选用右孩子最小元素/左孩子最大元素上调)
t.element = findMin(t.right).element;
t.right = remove(t.element, t.right);
} else {
// 要删除的节点有一个孩子或者没有孩子
t = (t.left != null) ? t.left : t.right;
}
return t;
}
/**
* 遍历此二叉树(内部方法)
*/
private void printTree(BinaryNode<AnyType> t) {
// 中序遍历-->即递增顺序
if (t != null) {
printTree(t.left);
System.out.println(t.element);
printTree(t.right);
}
}
/**
* 求树的深度(内部方法)
*/
private int height(BinaryNode<AnyType> t) {
if (t == null) {
return -1;
} else {
return 1 + Math.max(height(t.left), height(t.right));
}
}
/**
* 主方法用来测试
*/
public static void main(String[] args) {
BinarySearchTree<Integer> t = new BinarySearchTree<>();
t.insert(6);
t.insert(3);
t.insert(9);
t.insert(2);
t.insert(5);
t.insert(8);
t.insert(10);
t.printTree();
t.insert(4);
}
}
okay,今天就到这啦,一定要掌握这种数据结构哈,真的很重要!!!
用Java实现二叉查找树的更多相关文章
- 数据结构:JAVA实现二叉查找树
数据结构:JAVA实现二叉查找树 写在前面 二叉查找树(搜索树)是一种能将链表插入的灵活性与有序数组查找的高效性结合在一起的一种数据结构. 观察二叉查找树,我们发现任何一个节点大于左子节点且小于其右子 ...
- Java实现二叉查找树
摘要:一个二叉查找树的Java实现.可以学习二叉树处理的递归及非递归技巧. 难度:初级. 为了克服对树结构编程的恐惧感,决心自己实现一遍二叉查找树,以便掌握关于树结构编程的一些技巧和方法.以下是基本思 ...
- JAVA数据结构--二叉查找树
二叉查找树定义 二叉查找树(英语:Binary Search Tree),也称二叉搜索树.有序二叉树(英语:ordered binary tree),排序二叉树(英语:sorted binary tr ...
- 使用java实现二叉查找树的插入,修改和删除方法
目前使用的是根据key的hashcode来进行排序,并且没有考虑hash碰撞的问题 package com.zhou.tree; import java.util.Comparator; import ...
- 二叉查找树(三)之 Java的实现
概要 在前面分别介绍了"二叉查找树的相关理论知识,然后给出了二叉查找树的C和C++实现版本".这一章写一写二叉查找树的Java实现版本. 目录 1. 二叉树查找树2. 二叉查找树的 ...
- 红黑树(五)之 Java的实现
概要 前面分别介绍红黑树的理论知识.红黑树的C语言和C++的实现.本章介绍红黑树的Java实现,若读者对红黑树的理论知识不熟悉,建立先学习红黑树的理论知识,再来学习本章.还是那句老话,红黑树的C/C+ ...
- Java数据结构和算法(四)赫夫曼树
Java数据结构和算法(四)赫夫曼树 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 赫夫曼树又称为最优二叉树,赫夫曼树的一个 ...
- Java数据结构和算法(二)树的基本操作
Java数据结构和算法(二)树的基本操作 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 一.树的遍历 二叉树遍历分为:前序遍 ...
- 红黑树 Java实现
概要 前面分别介绍红黑树的理论知识.红黑树的C语言和C++的实现.本章介绍红黑树的Java实现,若读者对红黑树的理论知识不熟悉,建立先学习红黑树的理论知识,再来学习本章.还是那句老话,红黑树的C/C+ ...
随机推荐
- 剑指Offer-37.二叉树的深度(C++/Java)
题目: 输入一棵二叉树,求该树的深度.从根结点到叶结点依次经过的结点(含根.叶结点)形成树的一条路径,最长路径的长度为树的深度. 分析: 递归求解左右子树的最大值即可,每遍历到一个结点,深度加1,最后 ...
- 蓝牙spp协议分析
基本概念 蓝牙串口是基于 SPP 协议(Serial Port Profile),能在蓝牙设备之间创建串口进行数据传输的一种设备. 蓝牙串口的目的是针对如何在两个不同设备(通信的两端)上的应用之间保证 ...
- C语言程序设计100例之(23):数列求和
例23 数列求和 问题描述 已知某数列前两项为2和3,其后继项根据前面最后两项的乘积,按下列规则生成: ① 若乘积为一位数,则该乘积即为数列的后继项: ② 若乘积为二位数,则该乘积的十位上的数字和个 ...
- IT兄弟连 HTML5教程 CSS3揭秘 CSS3属性5
9 透明属性 元素透明也是我们常用的样式,在CSS2中使用滤镜属性opacity实现透明效果.现在有了CSS3的rgba属性,就不用这么麻烦了,当然这也得要浏览器支持才行.通常我们定义颜色都是用十六 ...
- Cypress安装使用(E2E测试框架)
一.简介 Cypress是为现代网络打造的下一代前端测试工具,解决了开发人员和QA工程师在测试现代应用程序时面临的关键难点问题. Cypress包含免费的.开源的.可本地安装的Test Runner ...
- Spring Boot Redis 解析
redis使用示例 本示例主要内容 使用lettuce操作redis redis字符串存储(RedisStringController.java) redis对象存储(RedisObjectContr ...
- Excel导入导出DataGridView
/// <summary> /// excel表保存到dataTable中 /// </summary> /// <param name="path" ...
- GO基础之切片
一.什么是切片 Go语言切片是对数组的抽象. Go数组的长度不可改变,在特定场景中这样的集合就不太适用,Go中提供了一种灵活,功能强悍的内置类型切片("动态数组"): 与数组相比切 ...
- ArcGIS api for JavaScript 3.27 在线浏览的一些小部件
var navOption; var navToolbar;// 当前选择的操作 require( [ "esri/toolbars/navigation", "esri ...
- 漏洞扫描与分析-Nessus-8.7.2最新版-安装-部署-使用
漏洞扫描与分析-Nessus 2019/10/10 Chenxin 简介 官网 https://zh-cn.tenable.com/ 产品 https://zh-cn.tenable.com/prod ...