### POJ 1724 题目链接 ###

题目大意:

给你 N 个点 ,M 条有向路,走每条路需要花费 C 元,这段路的长度为 L 。

给你 K 元,问你能否从 1 走到 N 点且花费不超过 K 元。如果可以,输出出最短距离,否则输出 -1 。

显然分层图最短路,这里 dist[i][j] 表示从 1 到 i 点 且 所剩钱数为 j 时的最短路,然后跑一遍 dijkstra 即可。

PS:在优先队列先到达 N 点的即为答案,可以直接返回,不需要等队列走完再 O(N)找最小值,时间会很快(这里还是遍历了一遍 = =)

代码如下: 

#include<iostream>
#include<algorithm>
#include<string.h>
#include<queue>
#define inf 0x3f3f3f3f
#define maxn 308
using namespace std;
int K,N,M,cnt;
int head[maxn],ans;
bool vis[maxn][];
int dist[maxn][];
struct Edge
{
int to;
int val;
int m;
int next;
}edge[maxn*maxn];
struct Node
{
int x;
int k;
int val;
Node(){};
Node(int _x,int _k,int _val){
x=_x,k=_k,val=_val;
}
bool operator < (const Node a) const{
return val>a.val;
}
};
inline void add(int u,int v,int val,int m)
{
edge[++cnt].to=v;
edge[cnt].val=val;
edge[cnt].m=m;
edge[cnt].next=head[u];
head[u]=cnt;
return;
}
void dijkstra()
{
priority_queue<Node> q;
while(!q.empty()) q.pop();
for(int i=;i<=N;i++){
for(int j=;j<=K;j++){
dist[i][j]=inf;
}
}
q.push(Node(,K,));
dist[][K]=;
while(!q.empty())
{
int u=q.top().x,k=q.top().k;
q.pop(); // 这里可以直接 if( u == N) ans = q.top().val ,即为答案
if(vis[u][k]) continue;
vis[u][k]=true;
for(int i=head[u];i;i=edge[i].next){
int v=edge[i].to;
if(k>=edge[i].m){
if(dist[v][k-edge[i].m]>dist[u][k]+edge[i].val){
dist[v][k-edge[i].m]=dist[u][k]+edge[i].val;
q.push(Node(v,k-edge[i].m,dist[v][k-edge[i].m]));
}
}
}
}
return;
}
int main()
{
//freopen("test.in","r",stdin);
//freopen("test.out","w",stdout);
scanf("%d%d%d",&K,&N,&M);
int A,B,C,D;
while(M--)
{
scanf("%d%d%d%d",&A,&B,&C,&D);
add(A,B,C,D);
}
ans=inf;
dijkstra();
for(int i=;i<=K;i++){
ans=min(ans,dist[N][i]);
}
if(ans==inf) printf("-1\n");
else printf("%d\n",ans );
}

POJ 1724 (分层图最短路)的更多相关文章

  1. poj3635Full Tank?[分层图最短路]

    Full Tank? Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7248   Accepted: 2338 Descri ...

  2. HDU 5669 线段树优化建图+分层图最短路

    用线段树维护建图,即把用线段树把每个区间都标号了,Tree1中子节点有到达父节点的单向边,Tree2中父节点有到达子节点的单向边. 每次将源插入Tree1,汇插入Tree2,中间用临时节点相连.那么T ...

  3. BZOJ 2763 分层图最短路

    突然发现我不会分层图最短路,写一发. 就是同层中用双向边相连,用单向边连下一层 #include <cstdio> #include <algorithm> #include ...

  4. 【网络流24题】 No.15 汽车加油行驶问题 (分层图最短路i)

    [题意] 问题描述:给定一个 N*N 的方形网格,设其左上角为起点◎, 坐标为( 1, 1), X 轴向右为正, Y轴向下为正, 每个方格边长为 1, 如图所示. 一辆汽车从起点◎出发驶向右下角终点▲ ...

  5. 【网络流24题】 No.14 孤岛营救问题 (分层图最短路)

    [题意] 1944 年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛, 营救被敌军俘虏的大兵瑞恩. 瑞恩被关押在一个迷宫里, 迷宫地形复杂, 但幸好麦克得到了迷宫的地形图. 迷宫的外形是 ...

  6. BZOJ_2662_[BeiJing wc2012]冻结_分层图最短路

    BZOJ_2662_[BeiJing wc2012]冻结_分层图最短路 Description “我要成为魔法少女!”     “那么,以灵魂为代价,你希望得到什么?” “我要将有关魔法和奇迹的一切, ...

  7. BZOJ_1579_[Usaco2009 Feb]Revamping Trails 道路升级_分层图最短路

    BZOJ_1579_[Usaco2009 Feb]Revamping Trails 道路升级_分层图最短路 Description 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M ...

  8. Nowcoder contest 370H Rinne Loves Dynamic Graph【分层图最短路】

    <题目链接> 题目大意:Rinne 学到了一个新的奇妙的东西叫做动态图,这里的动态图的定义是边权可以随着操作而变动的图.当我们在这个图上经过一条边的时候,这个图上所有边的边权都会发生变动. ...

  9. ACM-ICPC 2018 南京赛区网络预赛 L 【分层图最短路】

    <题目链接> 题目大意: 有N个城市,这些城市之间有M条有向边,每条边有权值,能够选择K条边 边权置为0,求1到N的最短距离. 解题分析: 分层图最短路模板题,将该图看成 K+1 层图,然 ...

随机推荐

  1. uiautomatorviewer 报错 Error while obtaining UI hierarchy XML file: com.android.ddmlib.SyncException: Remote object doesn't exist!

    在进行自动化时经常需要使用到 uiautomatorviewer获取控件的各个属性,然后在脚本中通过各个控件的属性来操作. 如果使用的是uiautomator2的话,一般都是使用weditor这个来查 ...

  2. 记录python上传文件的坑(2)

    描述: 1.之前在写项目mock代码时,碰到一个上传文件的接口,但项目接口本身有token保护机制,碰到token失效时,需要重新获取一次token后,再次对上传文件发起请求,在实际调用中发现,第一次 ...

  3. Django中的sql注入

    Django中防止SQL注入的方法 方案一总是使用Django自带的数据库API.它会根据你所使用的数据库服务器(例如PostSQL或者MySQL)的转换规则,自动转义特殊的SQL参数.这被运用到了整 ...

  4. element form 对单个字段做验证

    this.$refs[formName].validateField('phone', phoneError => { //验证手机号码是否正确 if (!phoneError) { conso ...

  5. pyhon代码设计格式指南

    一 缘由: 经常看到周围人写的代码,在大公司有规范,很多人不乱写代码,但是在很多小公司,很多程序员都是半路出家,也不喜欢读书学习,导致写出来的代码乱七八糟.今天拜读了python编程这本书,作者把py ...

  6. 第420期 Python 周刊

    文章.教程或讲座 Python 数据科学教程:分析 Stack Overflow 2019 年开发者调查表** https://www.youtube.com/watch?v=_P7X8tMplsw ...

  7. IT兄弟连 HTML5教程 CSS3揭秘 CSS3属性2

    3  背景属性 在CSS3中提供了多个背景属性,这里只介绍两个比较常用的属性,其他属性可以从手册中获取帮助.在CSS3中,通过background-image或者background属性可以为一个容器 ...

  8. 使用cJSON库解析和构建JSON字符串

    使用cJSON库解析和构建JSON字符串 前言 其实之前的两篇博文已经介绍了json格式和如何使用cJSON库来解析JSON: 使用cJSON库解析JSON JSON简介 当时在MCU平台上使用时,会 ...

  9. HttpModules配置事项

    前沿:还是那句话 ASP.NET管道,浏览器 - isAPI32.dll - HttpModules - HttpHandler - 返回客户端Web.Config:<httpModules&g ...

  10. NFS文件系统及搭建NFS共享服务

    一.什么是文件系统? 文件系统是对一个存储设备上的数据和元数据进行组织的一种机制.文件系统是在一个磁盘(包括光盘.软盘.闪盘及其它存储设备)或分区上组织文件方式方法,常见文件系统如ext2.ext3. ...