Octave Convolution详解
前言
Octave Convolution来自于这篇论文《Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution》这篇论文,该论文也被ICCV2019接收。
Octave表示的是音阶的八度,而本篇核心思想是通过对数据低频信息减半从而达到加速卷积运算的目的,而两个Octave之间也是声音频率减半【2】。
Octave Convolution(后面将以OctConv命名)主要有以下三个贡献:
- 将卷积特征图分成了两组,一组低频,一组高频,低频特征图的大小会减半,从而可以有效减少存储以及计算量,另外,由于特征图大小减小,卷积核大小不变,感受野就变大了,可以抓取更多的上下文信息;
- OctConv是一种即插即用的卷积块,可以直接替换传统的conv(也替换分组卷积以及深度可分离卷积等),减小内存和计算量;
- 当然,作者做了大量实验,使用OctConv可以得到更高性能,甚至可以媲美best Auto ML。
总的来说,OctConv是占用内存小,速度快,性能高,即插即用的conv块。
OctConv的特征表示
自然图像可被分解为低频分量以及高频分量,如下所示:
而卷积层的特征图也可以分为低频和高频分量,如下图(b)所示,OctConv卷积的做法是将低频分量的空间分辨率减半(如下图c所示),然后分两组进行conv,两组频率之间会通过上采样和下采样进行信息交互(见下图d),最后再合成原始特征图大小。
作者认为低频分量在一些特征图中是富集的,可以被压缩的,所以对低频分量进行了压缩,压缩的方式没有采用stride conv,而是使用了average pooling,因为stride conv会导致不对齐的行为。
OctConv的详细过程
如上图所示,OctConv的输入有两部分,一部分是高频\(X^H\),另一部分是低频\(X^L\),观察到\(X^L\)的大小是\(X^H\)的二分之一,这里通过两个参数\(\alpha_{in}\)和\(\alpha_{out}\)来控制低高频的输入通道和输出通道,一开始,输入只有一个\(X\),这时候的\(\alpha_{in}\)为0,然后通过两个卷积层(\(f\left(X^{H} ; W^{H \rightarrow H}\right)\)和\(f\left(p o o l\left(X^{H}, 2\right) ; W^{H \rightarrow L}\right)\))得到高频分量和低频分量,中间的OctConv就是有两个输入了和两个输出,最后需要从两个输入恢复出一个输出,此时\(\alpha_{out}\)为0,通过\(f\left(X^{H} ; W^{H \rightarrow H}\right)\)和\(upsample\left(f\left(X^{L} ; W^{L \rightarrow H}\right), 2\right)\)两个操作得到单独输出。
现在来讨论上面的四根线上的操作各代表什么。
\(f\left(X^{H} ; W^{H \rightarrow H}\right)\)是高频信息到高频信息,通过一个卷积层即可。
\(f\left(p o o l\left(X^{H}, 2\right) ; W^{H \rightarrow L}\right)\)是将高频信息汇合到低频信息中,先通过一个平均池化,然后通过一个卷积层。
\(upsample\left(f\left(X^{L} ; W^{L \rightarrow H}\right), 2\right)\)是将低频信息汇合到高频信息,先通过一个卷积层,然后通过平均池化层。
\(f\left(X^{L} ; W^{L \rightarrow L}\right)\)是将低频信息到低频信息,通过一个卷积层。
现在看看卷积核参数分配的问题,如下图所示:
上面的四个操作对应上图的四个部分,可以看到总的参数依然是\(c_{i n} \times c_{o u t} \times k \times k\),但由于低频分量的尺寸减半,所需要的存储空间变小,以及计算量缩减,达到加速卷积的过程。
Pytorch代码
下面的代码来自于OctaveConv_pytorch ,代码可读性很高,如果理解了上述过程,看起来会很容易。
第一层OctConv卷积,将特征图x分为高频和低频:
class FirstOctaveConv(nn.Module):
def __init__(self, in_channels, out_channels,kernel_size, alpha=0.5, stride=1, padding=1, dilation=1,
groups=1, bias=False):
super(FirstOctaveConv, self).__init__()
self.stride = stride
kernel_size = kernel_size[0]
self.h2g_pool = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
self.h2l = torch.nn.Conv2d(in_channels, int(alpha * out_channels),
kernel_size, 1, padding, dilation, groups, bias)
self.h2h = torch.nn.Conv2d(in_channels, out_channels - int(alpha * out_channels),
kernel_size, 1, padding, dilation, groups, bias)
def forward(self, x):
if self.stride ==2:
x = self.h2g_pool(x)
X_h2l = self.h2g_pool(x)
X_h = x
X_h = self.h2h(X_h)
X_l = self.h2l(X_h2l)
return X_h, X_l
中间层的OctConv,低高频输入,低高频输出:
class OctaveConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, alpha=0.5, stride=1, padding=1, dilation=1,
groups=1, bias=False):
super(OctaveConv, self).__init__()
kernel_size = kernel_size[0]
self.h2g_pool = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
self.upsample = torch.nn.Upsample(scale_factor=2, mode='nearest')
self.stride = stride
self.l2l = torch.nn.Conv2d(int(alpha * in_channels), int(alpha * out_channels),
kernel_size, 1, padding, dilation, groups, bias)
self.l2h = torch.nn.Conv2d(int(alpha * in_channels), out_channels - int(alpha * out_channels),
kernel_size, 1, padding, dilation, groups, bias)
self.h2l = torch.nn.Conv2d(in_channels - int(alpha * in_channels), int(alpha * out_channels),
kernel_size, 1, padding, dilation, groups, bias)
self.h2h = torch.nn.Conv2d(in_channels - int(alpha * in_channels),
out_channels - int(alpha * out_channels),
kernel_size, 1, padding, dilation, groups, bias)
def forward(self, x):
X_h, X_l = x
if self.stride ==2:
X_h, X_l = self.h2g_pool(X_h), self.h2g_pool(X_l)
X_h2l = self.h2g_pool(X_h)
X_h2h = self.h2h(X_h)
X_l2h = self.l2h(X_l)
X_l2l = self.l2l(X_l)
X_h2l = self.h2l(X_h2l)
X_l2h = self.upsample(X_l2h)
X_h = X_l2h + X_h2h
X_l = X_h2l + X_l2l
return X_h, X_l
最后一层的OctConv,将低高频汇合称输出。
class LastOctaveConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, alpha=0.5, stride=1, padding=1, dilation=1,
groups=1, bias=False):
super(LastOctaveConv, self).__init__()
self.stride = stride
kernel_size = kernel_size[0]
self.h2g_pool = nn.AvgPool2d(kernel_size=(2,2), stride=2)
self.l2h = torch.nn.Conv2d(int(alpha * in_channels), out_channels,
kernel_size, 1, padding, dilation, groups, bias)
self.h2h = torch.nn.Conv2d(in_channels - int(alpha * in_channels),
out_channels,
kernel_size, 1, padding, dilation, groups, bias)
self.upsample = torch.nn.Upsample(scale_factor=2, mode='nearest')
def forward(self, x):
X_h, X_l = x
if self.stride ==2:
X_h, X_l = self.h2g_pool(X_h), self.h2g_pool(X_l)
X_l2h = self.l2h(X_l)
X_h2h = self.h2h(X_h)
X_l2h = self.upsample(X_l2h)
X_h = X_h2h + X_l2h
return X_h
参考
【2】Pytorch代码
Octave Convolution详解的更多相关文章
- SIFT算法详解(转)
http://blog.csdn.net/zddblog/article/details/7521424 目录(?)[-] 尺度不变特征变换匹配算法详解 Scale Invariant Feature ...
- 【转】 SIFT算法详解
尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)Just For Fun zdd zddmail@gmail.com 对于初学者,从Davi ...
- 深度学习之卷积神经网络(CNN)详解与代码实现(一)
卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目 ...
- 代码详解:TensorFlow Core带你探索深度神经网络“黑匣子”
来源商业新知网,原标题:代码详解:TensorFlow Core带你探索深度神经网络“黑匣子” 想学TensorFlow?先从低阶API开始吧~某种程度而言,它能够帮助我们更好地理解Tensorflo ...
- 深度学习基础(CNN详解以及训练过程1)
深度学习是一个框架,包含多个重要算法: Convolutional Neural Networks(CNN)卷积神经网络 AutoEncoder自动编码器 Sparse Coding稀疏编码 Rest ...
- SIFT算法详解
尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)Just For Fun zdd zddmail@gmail.com or (zddhub@ ...
- sift拟合详解
1999年由David Lowe首先发表于计算机视觉国际会议(International Conference on Computer Vision,ICCV),2004年再次经David Lowe整 ...
- [转]CNN目标检测(一):Faster RCNN详解
https://blog.csdn.net/a8039974/article/details/77592389 Faster RCNN github : https://github.com/rbgi ...
- Attention is all you need 论文详解(转)
一.背景 自从Attention机制在提出之后,加入Attention的Seq2Seq模型在各个任务上都有了提升,所以现在的seq2seq模型指的都是结合rnn和attention的模型.传统的基于R ...
随机推荐
- Cocos2d-x.3.0开发环境搭建
配置:win7 + VS2012 + Cocos2d-x.3.0 + Cocos Studio v1.4.0.1 前言:本文介绍在上述配置下进行游戏开发的环境搭建.开发语言为C++.如果读者不需要查看 ...
- 【RTOS】基于V7开发板的RTX5和FreeRTOS带CMSIS-RTOS V2封装层的模板例程下载,AC6和AC5两个版本
说明: 1.使用MDK的RTE环境开发RTX5和FreeRTOS,简单易移植,统一采用CMSIS-RTOS V2封装层. 2.DTCM是H7里面性能最高的RAM,主频400MHz,跟内核速度一样,所以 ...
- css流星 效果
style: .loding { width: 100%; height: 100%; } .bg{ width: 100%; height: 100%; ...
- IT兄弟连 HTML5教程 CSS3揭秘 CSS3属性2
3 背景属性 在CSS3中提供了多个背景属性,这里只介绍两个比较常用的属性,其他属性可以从手册中获取帮助.在CSS3中,通过background-image或者background属性可以为一个容器 ...
- Zabbix-(七)分布式监控
Zabbix-(七)分布式监控 一.前言 Zabbix提供了一套分布式监控的方案,即使用Zabbix Proxy,本文记录使用Zabbix Proxy进行分布式监控. 官方所述Proxy的使用场景如下 ...
- C 语言输出不同颜色字体
C 语言输出不同颜色字体 \033是8进制,它就是unix下终端转义符ESC(16进制1A,10进制27) ESC[xm 是unix下改变终端输出颜色的命令 所以,如果是红色,则我们定义为\033[0 ...
- 利用 python 分析基金,合理分析数据让赚钱赢在起跑线!
前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 白玉无冰 PS:如有需要Python学习资料的小伙伴可以加点击下方 ...
- requeests模块响应体属性和方法重新整理
下面的属性方法都是基于response对象` import requests response = requests.get('url') 一.url 返回值的url 二. text 获得响应体文本信 ...
- vue关于mock的简单使用
一.mock 1.简介 mock是一个模拟数据生成器,旨在帮助前端独立于后端进行开发,帮助编写单元测试.其可模拟 Ajax 并返回模拟数据,使前端不用去调用后端的接口,方便测试. 2.vue直接使用m ...
- vue v-if和v-show的区别
其中v-if依赖于控制DOM节点,而v-show是依赖于控制DOM节点的display属性. 当v-show传入的值为true时,对应DOM元素的display的值为block之类的,反之为false ...