MIT HAKMEM算法-BitCount算法
MIT HAKMEM算法
1.问题来源
- 问题描述:
#include <iostream>
using namespace std;
unsigned int fib(int n)
{
if(n==0 || n==1)
return 1;
return f(n-1)+f(n-2);
}
void count(int n)
{
unsigned int temp= n - ((n>>1)&033333333333) - ((n>>2)&011111111111)
std::cout<< ((temp+(temp>>3))&030707070707) %63 <<std::endl;
}
int main()
{
count(f(7));
count(f(9));
return 0;
}
哈哈,看见这个题
这不是 fib数列递归运算后再进行二进制的运算
序号 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
fib | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 |
摊手、哈哈 菜 计算不出来!
查找资料 - 这个count函数就是统计bit个数的
f(7)=21=00010101B
f(9)=55= 00110111B
输出: 3,5
2.问题描述:
现在来研究研究这个count函数-统计整数(二进制)中“1”的个数
一些知识点
1.整数性的数值
\(i=a_{0} * 2^{0} + a_{1} * 2^{1}+a_{2}*2^{2}+...+a_{n}* 2^{n}\)
所以count “1”的个数
\(count=a_{0}+a_{1}+a_{2}+...+a_{n}\)2.对于任何自然数n的N次幂 \(n^{N}\),用n-1 取模得数为1
\]
利用归纳法来证明:
假设 \(n^{k-1} \%(n-1)=1\) 成立
证明 \(n^{k} \%(n-1)=1\)
\]
\]
- 3.一个系数 为\(a_{i}\)以n为底的多项式P(N)
\]
保证$\sum a_{i} $小于余数 $\sum a_{i} < n-1 $
可以推导出
\]
32bit的整数,可以取 n=64 n-1=63作为余数来实现count
4.将32位二进制数的每6位作为一个单位,看作以64为底的多项式
\(I=t_{0}* 64^{0}+ t_{1} * 64^{1} +...+t_{n} * 64^{n}\)
各个单位中的6位数变为这6位中含有的'1'的个数,再用63取模,就可以得到所求的总的'1'的个数。5.其中任意一项的6位数ti进行考虑,最简单的方法显然是对每次对1位进行mask然后相加
(ti>>5)&(000001) + (ti&>>4)(000001) + (ti>>3)&(000001) + (ti>>2)&(000001) + (ti>>1)&(000001) + ti&(000001)
初步实现代码
int bitcount(unsigned int n)
{
unsigned int tmp;
tmp = (n &010101010101)
+((n>>1)&010101010101)
+((n>>2)&010101010101)
+((n>>3)&010101010101)
+((n>>4)&010101010101)
+((n>>5)&010101010101);
return (tmp%63);
}
- 6.位数中最多只有6个'1',也就是000110,只需要3位有效位。上面的式子实际上是以1位为单位提取出'1'的个数再相加求和求出6位中'1'的总个数的,所以用的是&(000001)。如果以3位为单位算出'1'的个数再进行相加的话,那么就完全可以先加后MASK。
tmp = (ti>>2)&(001001) + (ti>>1)&(001001) + ti&(001001)
(tmp + tmp>>3)&(000111)
int bitcount(unsigned int n)
{
unsigned int tmp;
tmp = (n &011111111111)
+((n>>1)&011111111111)
+((n>>2)&011111111111);
tmp = (tmp + (tmp>>3)) &030707070707;
return (tmp%63);
}
- 7.最终的优化代码
unsigned int tmp;
tmp = n
- ((n >> 1) & 033333333333)
- ((n >> 2) & 011111111111);
tmp = (tmp + (tmp >> 3)) & 030707070707
return (tmp%63);
}
MIT HAKMEM算法-BitCount算法的更多相关文章
- MIT公开课:算法导论 笔记(一)
课程链接:http://open.163.com/special/opencourse/algorithms.html 第一课:算法分析基础 1.介绍插入排序与归并排序,计算并比较最坏运行时间 2.算 ...
- random array & shuffle 洗牌算法 / 随机算法
random array & shuffle shuffle 洗牌算法 / 随机算法 https://en.wikipedia.org/wiki/Fisher–Yates_shuffle ES ...
- GMM算法k-means算法的比较
1.EM算法 GMM算法是EM算法族的一个具体例子. EM算法解决的问题是:要对数据进行聚类,假定数据服从杂合的几个概率分布,分布的具体参数未知,涉及到的随机变量有两组,其中一组可观测另一组不可观测. ...
- 简单易学的机器学习算法——EM算法
简单易学的机器学习算法——EM算法 一.机器学习中的参数估计问题 在前面的博文中,如“简单易学的机器学习算法——Logistic回归”中,采用了极大似然函数对其模型中的参数进行估计,简单来讲即对于一系 ...
- 最短路径算法-Dijkstra算法的应用之单词转换(词梯问题)(转)
一,问题描述 在英文单词表中,有一些单词非常相似,它们可以通过只变换一个字符而得到另一个单词.比如:hive-->five:wine-->line:line-->nine:nine- ...
- 重新想象 Windows 8 Store Apps (31) - 加密解密: 哈希算法, 对称算法
原文:重新想象 Windows 8 Store Apps (31) - 加密解密: 哈希算法, 对称算法 [源码下载] 重新想象 Windows 8 Store Apps (31) - 加密解密: 哈 ...
- Hash散列算法 Time33算法
hash在开发由频繁使用.今天time33也许最流行的哈希算法. 算法: 对字符串的每一个字符,迭代的乘以33 原型: hash(i) = hash(i-1)*33 + str[i] ; 在使用时.存 ...
- 变易算法 - STL算法
欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/mutating-algorithms.h ...
- STL非变易算法 - STL算法
欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/1394600460.html 原创:ST ...
随机推荐
- Jquery第二次考核
1. 名词解释 实例对象:var p1=new Person(); p1就是实例对象 构造:function Person(){} 原型对象:在 JavaScript 中,每当定义一个对象(函数也是 ...
- 简易数据分析 08 | Web Scraper 翻页——点击「更多按钮」翻页
这是简易数据分析系列的第 8 篇文章. 我们在Web Scraper 翻页--控制链接批量抓取数据一文中,介绍了控制网页链接批量抓取数据的办法. 但是你在预览一些网站时,会发现随着网页的下拉,你需要点 ...
- 定时延时设计FPGA
以50MHZ时钟为例,进行1秒钟延时,并输出延时使能信号. 首先计算需要多少次计时,MHZ=10的六次方HZ.T=20ns 一秒钟需要计时次数为5的七次方即5000_0000. 然后计算需要几位的寄存 ...
- UR机器人通信--上位机通信(python)
一.通信socket socket()函数 Python 中,我们用 socket()函数来创建套接字,语法格式如下: socket.socket([family[, type[, proto]]]) ...
- 夯实Java基础(五)——==与equals()
1.前言 我们在学习Java的时候,看到==.equals()就认为比较简单,随便看了一眼就过了,其实你并没有深入去了解二者的区别.这个问题在面试的时候出现的频率比较高,而且据统计有85%的人理直气壮 ...
- kubernetes CRD开发指南
扩展kubernetes两个最常用最需要掌握的东西:自定义资源CRD 和 adminsion webhook, 本文教你如何十分钟掌握CRD开发. kubernetes允许用户自定义自己的资源对象,就 ...
- JAVA基础知识(三):input.nextLine() 和input.next()
next()方法在读取内容时,会过滤掉有效字符前面的无效字符,对输入有效字符之前遇到的空格键.Tab键或Enter键等结束符,next()方法会自动将其过滤掉:只有在读取到有效字符之后,next()方 ...
- python3从入门到精通之数据类型,布尔类型介绍
数据的类型 为了更充分的利用内存空间以及更有效率的管理内存,变量是有不同的类型的. Number(数字) int(整型) float(浮点型) complex(复数) bool(布尔) String( ...
- ssm访问不了后台
最近整理ssm,写完demo案例,无论如何都访问不了后台,百度了好多,终于解决了问题所在 先看页面信息: 因为一直报404错误,一直找路径是不是弄错了,或配置文件弄错了,仅仅这个配置文件都看了无数遍, ...
- 算法与数据结构基础 - 分治法(Divide and Conquer)
分治法基础 分治法(Divide and Conquer)顾名思义,思想核心是将问题拆分为子问题,对子问题求解.最终合并结果,分治法用伪代码表示如下: function f(input x size ...