luoguP2480 [SDOI2010]古代猪文
题意
考虑所求即为:\(G^{\sum\limits_{d|n}C_n^d}\%999911659\)。
发现系数很大,先用欧拉定理化简系数:\(G^{\sum\limits_{d|n}C_n^d\%999911658}\%999911659\)。
实际上我们只用求\(\sum\limits_{d|n}C_n^d\%999911658\),之后快速幂即可。
发现\(999911658\)不是个质数,没办法用Lucas定理求组合数,于是考虑拆开\(999911658\),发现为\(2,3,4679,35617\)。
于是对模意义下这四个数分别求\(\sum\limits_{d|n}C_n^d\),假设第\(i\)个求出的为\(a_i\)
发现我们得到了四个形如\(x\equiv a_i\pmod{p_i}\)的方程,用中国剩余定理合并即可得到答案(这其实就是exLucas的简化版)。
code:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod1=999911659;
const ll mod2=999911658;
const int maxs=40010;
ll n,m;
ll a[5],prime[]={0,2,3,4679,35617};
ll fac[maxs][5],inv[maxs][5];
inline ll power(ll x,ll k,ll mod)
{
ll res=1;
while(k)
{
if(k&1)res=res*x%mod;
x=x*x%mod;k>>=1;
}
return res;
}
inline ll C(ll n,ll m,ll op)
{
if(m>n)return 0;
return fac[n][op]*inv[n-m][op]%prime[op]*inv[m][op]%prime[op];
}
inline ll Lucas(ll n,ll m,ll op)
{
if(!m)return 1;
return C(n%prime[op],m%prime[op],op)*Lucas(n/prime[op],m/prime[op],op)%prime[op];
}
void exgcd(ll a,ll b,ll& x,ll& y)
{
if(!b){x=1,y=0;return;}
exgcd(b,a%b,x,y);
ll z=x;x=y,y=z-(a/b)*y;
}
inline ll CRT()
{
ll res=0;
for(int i=1;i<=4;i++)
{
ll x,y,M=mod2/prime[i];
exgcd(M,prime[i],x,y);
x=(x%prime[i]+prime[i])%prime[i];
res=(res+a[i]*x%mod2*M%mod2)%mod2;
}
return res;
}
int main()
{
scanf("%lld%lld",&n,&m);
if(m==mod1){puts("0");return 0;}
for(int i=1;i<=4;i++)
{
fac[0][i]=1;
for(int j=1;j<prime[i];j++)fac[j][i]=fac[j-1][i]*j%prime[i];
inv[prime[i]-1][i]=power(fac[prime[i]-1][i],prime[i]-2,prime[i]);
for(int j=prime[i]-1;j;j--)inv[j-1][i]=inv[j][i]*j%prime[i];
}
for(ll i=1;i*i<=n;i++)
{
if(n%i)continue;
for(int j=1;j<=4;j++)
{
a[j]=(a[j]+Lucas(n,i,j))%prime[j];
if(i*i!=n)a[j]=(a[j]+Lucas(n,n/i,j))%prime[j];
}
}
printf("%lld",power(m,CRT(),mod1));
return 0;
}
luoguP2480 [SDOI2010]古代猪文的更多相关文章
- BZOJ 1951: [Sdoi2010]古代猪文( 数论 )
显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a ...
- 1951: [Sdoi2010]古代猪文
1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 2171 Solved: 904[Submit][Status] ...
- BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]
1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 2194 Solved: 919[Submit][Status] ...
- [SDOI2010]古代猪文 (欧拉,卢卡斯,中国剩余)
[SDOI2010]古代猪文 \(solution:\) 这道题感觉综合性极强,用到了许多数论中的知识: 质因子,约数,组合数 欧拉定理 卢卡斯定理 中国剩余定理 首先我们读题,发现题目需要我们枚举k ...
- 洛咕 P2480 [SDOI2010]古代猪文
洛咕 P2480 [SDOI2010]古代猪文 题目是要求\(G^{\sum_{d|n}C^d_n}\). 用费马小定理\(G^{\sum_{d|n}C^d_n\text{mod 999911658} ...
- 【BZOJ1951】[SDOI2010]古代猪文
[BZOJ1951][SDOI2010]古代猪文 题面 bzoj 洛谷 题解 题目实际上是要求 $ G^{\sum d|n\;C_n^d}\;mod \; 999911659 $ 而这个奇怪的模数实际 ...
- 【BZOJ1951】[Sdoi2010]古代猪文 Lucas定理+CRT
[BZOJ1951][Sdoi2010]古代猪文 Description 求$X=\sum\limits_{d|n}C_n^d$,$Ans=G^X (\mod 999911659)$. Input 有 ...
- 洛谷 P2480 [SDOI2010]古代猪文 解题报告
P2480 [SDOI2010]古代猪文 题目背景 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" ...
- 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理
[bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...
随机推荐
- UVA 1473 Dome of Circus
https://cn.vjudge.net/problem/UVA-1473 题目 给出一些点,问包含这些点的最小圆锥(要求顶点在y轴,底面圆心在原点)的体积 题解 因为圆锥对称,所以可以把所有点旋转 ...
- SP15637 Mr Youngs Picture Permutations 高维动态规划
问题描述 LG-SP 题解 发现\(n,k\)都非常小,尤其是\(k,k\le 5\),于是直接开\(5\)维进行\(\mathrm{DP}\) 用记忆化搜索实现. \(\mathrm{Code}\) ...
- FCN用卷积层代替FC层原因(转)
原博客连接 : https://www.cnblogs.com/byteHuang/p/6959714.html CNN对于常见的分类任务,基本是一个鲁棒且有效的方法.例如,做物体分类的话,入门级别的 ...
- 练手WPF(三)——扫雷小游戏的简易实现(下)
十四.响应鼠标点击事件 (1)设置对应坐标位置为相应的前景状态 /// <summary> /// 设置单元格图样 /// </summary> /// <para ...
- LinuxShell脚本——选择结构
LinuxShell脚本——选择结构 摘要:本文主要学习了Shell脚本中的选择结构. if-else语句 基本语法 最简单的用法就是只使用if语句,它的语法格式为: if 条件 then 命令 fi ...
- 【面试突击】-RabbitMQ常见面试题(三)
1.什么是RabbitMQ?为什么使用RabbitMQ? 答:RabbitMQ是一款开源的,Erlang编写的,基于AMQP协议的,消息中间件: 可以用它来:解耦.异步.削峰. 2.RabbitMQ有 ...
- ES6数组及对象遍历的新增方法 entries(),keys() 和 values()
ES6 提供三个新的方法——entries(),keys()和values()——用于遍历数组.它们都返回一个遍历器对象(详见<Iterator>一章),可以用for...of循环进行遍历 ...
- 关于 SONY WF1000XM3 在 Windows 10 下蓝牙连接只有 Handfree 没有 Stereo 模式
应该是驱动适配问题,目前粗暴的解决方案貌似下载安装一个 Intel APTX 驱动就可以了: https://www.dell.com/support/home/cn/zh/cndhs1/driver ...
- Android 安全攻防(一):SEAndroid的编译
转自:http://blog.csdn.net/yiyaaixuexi/article/details/8330645 SEAndroid概述 SEAndroid(Security-Enhance ...
- 什么是POSP?系统逻辑是什么?pos收单必读
POSProxy,POS前置系统.主要用于管理前端的POS机具和交易的转发,具体功能有: 1. POS机具的密钥及下载管理: 2. 交易的合法检测和过滤: 3. 交易监控和分流: 4. ...