from keras.preprocessing.image import load_img, img_to_array

a = load_img('1.jpg')
b = img_to_array(a) print (type(a),type(b))
输出:
  a type:<class 'PIL.JpegImagePlugin.JpegImageFile'>,b type:<class 'numpy.ndarray'>

optimizer:

Adam  :  

算法思想 [1]:

      Adam中动量直接并入了梯度一阶矩(指数加权)的估计。其次,相比于缺少修正因子导致二阶矩估计可能在训练初期具有很高偏置的RMSProp,Adam包括偏置修正,修正从原点初始化的一阶矩(动量项)和(非中心的)二阶矩估计。

数学表达式:

mt和vt分别为一阶动量项和二阶动量项;m^t,v^t为各自的修正值。

beta_1, beta_2为动力值大小通常分别取0.9和0.999。

Wt表示t时刻即第t次迭代模型的参数,gt=ΔJ(Wt)表示t次迭代代价函数关于W的梯度大小

ϵ是一个取值很小的数(一般为1e-8)为了避免分母为0,tensorflow作为backend时,ϵ=1e-7

评价:Adam通常被认为对超参数的选择相当鲁棒,尽管学习率有时需要从建议的默认修改。

keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)

lr: float >= 0. Learning rate.
beta_1: float, 0 < beta < 1. Generally close to 1.default 0.9,通常保持不变
beta_2: float, 0 < beta < 1. Generally close to 1.default 0.999,通常保持不变
epsilon: float >= 0. Fuzz factor. If None, defaults to K.epsilon(). decay: float >= 0. Learning rate decay over each update. amsgrad: boolean. Whether to apply the AMSGrad variant of this algorithm
from the paper "On the Convergence of Adam and Beyond".

SGD    :

AdaGrad:

Reference:

   https://keras.io/optimizers/

   https://blog.csdn.net/weixin_40170902/article/details/80092628

model.fit()

fit(x=None, y=None, batch_size=None, epochs=1, verbose=1, 
  callbacks=None, validation_split=0.0, validation_data=None,
  shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0,
  steps_per_epoch=None, validation_steps=None, validation_freq=1)

model.fit_generator()

使用数据data_generator 传输数据,用于大型数据集,直接读取大型数据集会导致内存占用过高。

fit_generator(generator, steps_per_epoch=None, epochs=1, verbose=1, 
        callbacks=None, validation_data=None, validation_steps=None,
        validation_freq=1, class_weight=None, max_queue_size=10, workers=1,
        use_multiprocessing=False, shuffle=True, initial_epoch=0)

callbacks

list()值,当call中条件不满足时停止更新权重,

keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=0, verbose=0, mode='auto', baseline=None, restore_best_weights=False)

monitor:需要监视的值,[acc,loss],如果fit种有validation_data,还可使用val_acc, val_loss等

min_delta: 改变的值如果小于min_delta, 将不视为有提高。

patience: 从最好的开始,经过patience个epoch仍未提高,则停止training

_obtain_input_shape()

keras 2.2.2中,keras.applications.imagenet_utils模块不再有_obtain_input_shape, _obtain_input_shape的根模块改为了keras_applications.imagenet_utils

形式改为了

_obtain_input_shape(input_shape,
          default_size = 224,
          min_size = 32,
          data_format = K.image_data_format(),
require_flatten = True,
weights=None):

_obtain_input_shape(input_shape,
          default_size=224,
          min_size=32,
          data_format=K.image_data_format(),
include_top=include_top or weights)

keras 学习笔记(一) ——— model.fit & model.fit_generator的更多相关文章

  1. 官网实例详解-目录和实例简介-keras学习笔记四

    官网实例详解-目录和实例简介-keras学习笔记四 2018-06-11 10:36:18 wyx100 阅读数 4193更多 分类专栏: 人工智能 python 深度学习 keras   版权声明: ...

  2. Keras学习笔记——Hello Keras

    最近几年,随着AlphaGo的崛起,深度学习开始出现在各个领域,比如无人车.图像识别.物体检测.推荐系统.语音识别.聊天问答等等.因此具备深度学习的知识并能应用实践,已经成为很多开发者包括博主本人的下 ...

  3. Keras学习笔记1--基本入门

    """ 1.30s上手keras """ #keras的核心数据结构是“模型”,模型是一种组织网络层的方式,keras 的主要模型是Sequ ...

  4. keras 学习笔记:从头开始构建网络处理 mnist

    全文参考 < 基于 python 的深度学习实战> import numpy as np from keras.datasets import mnist from keras.model ...

  5. keras学习笔记-bili莫烦

    一.keras的backend设置 有两种方式: 1.修改JSON配置文件 修改~/.keras/keras.json文件内容为: { "iamge_dim_ordering":& ...

  6. Python学习笔记:Flask-Migrate基于model做upgrade的基本原理

      1)flask-migrate的官网:https://flask-migrate.readthedocs.io/en/latest/  2)获取帮助,在pycharm的控制台中输入 flask d ...

  7. backbone学习笔记:模型(Model)(2)属性验证

    Backbone的属性验证有2种方法: 1.Backbone自带简单的验证方法,但是验证规则需要自己实现 通过validate()方法进行验证,验证规则写在此方法里. var RoomModel = ...

  8. backbone学习笔记:模型(Model)(1)基础知识

    backbone为复杂Javascript应用程序提供MVC(Model View Controller)框架,框架里最基本的是Model(模型),它用来处理数据,对数据进行验证,完成后台数据与前台数 ...

  9. Python-Django学习笔记(三)-Model模型的编写以及Oracle数据库的配置

    Django使用的 MTV 设计模式(Models.Templates.Views) 因此本节将围绕这三部分并按照这个顺序来创建第一个页面 模型层models.py 模型是数据唯一而且准确的信息来源. ...

随机推荐

  1. 201871010113-刘兴瑞《面向对象程序设计(java)》第十四周学习总结

    项目 内容 这个作业属于哪个课程 <任课教师博客主页链接>https://www.cnblogs.com/nwnu-daizh/ 这个作业的要求在哪里 <作业链接地址>http ...

  2. acwing 70-72 剑指OFFER 二叉树相关

    地址 https://www.acwing.com/problem/content/66/ https://www.acwing.com/problem/content/67/ https://www ...

  3. testng.xml文件的配置

    ------Web自动化测试之Webdriver+TestNG--从零到熟练(系列) TestNG用来管理测试用例的是testng.xml配置文件,我们可以通过配置这个文件来达到组织测试用例,输出测试 ...

  4. 《大数据技术应用与原理》第二版-第三章分布式文件系统HDFS

    3.1分布式文件 HDFS默认一个块的大小是64MB,与普通文件不同的是如果一个文件小于数据块的大小,它并不占用整个数据块的存储空间. 主节点又叫名称节点:另一个叫从节点又叫数据节点.名称节点负责文件 ...

  5. 第04组 Alpha冲刺(4/4)

    队名:斗地组 组长博客:地址 作业博客:Alpha冲刺(4/4) 各组员情况 林涛(组长) 过去两天完成了哪些任务: 1.分配展示任务 2.收集各个组员的进度 3.写博客 展示GitHub当日代码/文 ...

  6. Rails + Webpacker + Puma + Nginx 部署

    准备 ssh 登录 首先 ssh 登录服务器,免密码登录可以参考 ssh 免密码登录服务器 创建部署用户 $ sudo adduser deploy 安装依赖 Ruby 这里使用 RVM 安装和管理 ...

  7. Zotero入门精通

    一.Zotero简介 Zotero作为一款协助科研工作者收集.管理以及引用研究资源的免费软件,如今已被广泛使用.此篇使用说明主要分享引用研究资源功能,其中研究资源可以包括期刊.书籍等各类文献和网页.图 ...

  8. linux--新装机图形化界面遇到的问题

    1 许可证信息 q 退出 c 继续 r 刷新 按以下顺序正确输入即可: 1  ------  2 -----  q  -----  yes

  9. django--通过jwt获取用户信息的两种方式

    HTTP请求是无状态的,我们通常会使用cookie或session对其进行状态保持,cookie存储在客户端,容易被用户误删,安全性不高,session存储在服务端,在服务器集群情况下需要解决sess ...

  10. HTML连载41-水平居中的注意点、盒子居中和内容居中

    一.盒子模型练习 我们有个需求: 创建两个盒子,大盒子嵌套一个小盒子,大盒子是红色的,小盒子是蓝色的,并且小盒子在大盒子中是居中的. <!DOCTYPE html> <html la ...