A country named Berland has n cities. They are numbered with integers from 1 to n. City with index 1 is the capital of the country. Some pairs of cities have monodirectional roads built between them. However, not all of them are in good condition. For each road we know whether it needs repairing or not. If a road needs repairing, then it is forbidden to use it. However, the Berland government can repair the road so that it can be used.

Right now Berland is being threatened by the war with the neighbouring state. So the capital officials decided to send a military squad to each city. The squads can move only along the existing roads, as there's no time or money to build new roads. However, some roads will probably have to be repaired in order to get to some cities.

Of course the country needs much resources to defeat the enemy, so you want to be careful with what you're going to throw the forces on. That's why the Berland government wants to repair the minimum number of roads that is enough for the military troops to get to any city from the capital, driving along good or repaired roads. Your task is to help the Berland government and to find out, which roads need to be repaired.

Input

The first line contains two space-separated integers n and m (1 ≤ n, m ≤ 105) — the number of cities and the number of roads in Berland.

Next m lines contain three space-separated integers ai, bi, ci (1 ≤ ai, bi ≤ n, ai ≠ bi, 0 ≤ ci ≤ 1), describing the road from city ai to city bi. If ci equals 0, than the given road is in a good condition. If ci equals 1, then it needs to be repaired.

It is guaranteed that there is not more than one road between the cities in each direction.

Output

If even after all roads are repaired, it is still impossible to get to some city from the capital, print  - 1. Otherwise, on the first line print the minimum number of roads that need to be repaired, and on the second line print the numbers of these roads, separated by single spaces.

The roads are numbered starting from 1 in the order, in which they are given in the input.

If there are multiple sets, consisting of the minimum number of roads to repair to make travelling to any city from the capital possible, print any of them.

If it is possible to reach any city, driving along the roads that already are in a good condition, print 0 in the only output line.

Examples

Input
3 2
1 3 0
3 2 1
Output
1
2
Input
4 4
2 3 0
3 4 0
4 1 0
4 2 1
Output
-1
Input
4 3
1 2 0
1 3 0
1 4 0
Output
0

题解:
题目意思是:给你有向路径,0表示可以走,1表示这条路需要修复才能走,问你要让1号点能走到所有点的最小花费是多少。
思路:最小树形图就是最小代价,输出边的话,就是在zhuliu算法中的缩环的过程中记录需要增加的边和要删除的边,最后倒着处理一遍,剩下的边就是最小树形图上的边。
我们字需要输出边的类型为1的边即可。 参考代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pii pair<int,int>
#define pil pair<int,ll>
#define mkp make_pair
const int INF=0x3f3f3f3f;
const int maxn=1e6+;
struct Edge{
int x,y,w;
int id,real;
} edge[maxn];
int vis[maxn],id[maxn],in[maxn],pre[maxn];
int lastEdge[maxn],used[maxn];
int addEdge[maxn],delEdge[maxn];
int zhuliu(int root,int n,int m)
{
int res=,edgeNum=m;
while(true)
{
for(int i=;i<=n;++i) in[i]=INF;
for(int i=;i<=m;++i)//找到每个点的最小入边及其编号
{
int x=edge[i].x,y=edge[i].y;
if(edge[i].w<in[y] && x!=y)
{
pre[y]=x;
in[y]=edge[i].w;
lastEdge[y]=edge[i].id;
}
}
for(int i=;i<=n;++i)//判断是否可以形成最小树形图
{
if(i==root) continue;
if(in[i]==INF) return -;
}
int cnt=; in[root]=;
memset(id,-,sizeof id);
memset(vis,-,sizeof vis);
for(int i=;i<=n;++i)
{
res+=in[i];
if(i!=root) used[lastEdge[i]]++;
int y=i;
while(vis[y]!=i&&id[y]==-&&y!=root)
{
vis[y]=i;
y=pre[y];
}
if(y!=root && id[y]==-)
{
cnt++;
for(int x=pre[y];x!=y;x=pre[x]) id[x]=cnt;
id[y]=cnt;
}
} if(cnt==) break;
for(int i=;i<=n;++i)//独立点
if(id[i]==-) id[i]=++cnt; for(int i=;i<=m;++i)
{
int x=edge[i].x,y=edge[i].y;
edge[i].x=id[x];edge[i].y=id[y];
if(id[x]!=id[y])
{
edge[i].w-=in[y];
delEdge[++edgeNum]=lastEdge[y];
addEdge[edgeNum]=edge[i].id;
edge[i].id=edgeNum;
}
}
n=cnt;
root=id[root];
} for(int i=edgeNum;i>m;--i)
{
if(used[i])
{
--used[delEdge[i]];
++used[addEdge[i]];
}
}
return res;
} int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=m;++i)
{
scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].w);
edge[i].id=i;
edge[i].real=edge[i].w;
} int res=zhuliu(,n,m);
if(res==-||res==) printf("%d\n",res);
else
{
printf("%d\n",res);
for(int i=;i<=m;++i)
{
if(used[i]&&edge[i].real)
printf("%d ",i);
}
puts("");
} return ;
}

CF240E Road Repairs(最小树形图-记录路径)的更多相关文章

  1. Codeforces 240E. Road Repairs 最小树形图+输出路径

    最小树形图裸题,只是须要记录路径 E. Road Repairs time limit per test 2 seconds memory limit per test 256 megabytes i ...

  2. CF240E Road Repairs

    最小树形图+输出方案 输出方案的话记录一下哪些边 然后记得最后拆环要倒着拆就行了

  3. codeforce 240E 最小树形图+路径记录更新

    最小树形图的路径是在不断建立新图的过程中更新的,因此需要开一个结构体cancle记录那些被更新的边,保存可能会被取消的边和边在旧图中的id 在朱刘算法最后添加了一个从后往前遍历新建边的循环,这可以理解 ...

  4. POJ 1015 Jury Compromise (记录路径的背包问题)

    (点击此处查看原题) 题意 为了审判某一个人,需要在n个人当中选出m个人组成陪审团,n个人中每个人都有作为起诉方的价值p和作为辩护方的价值d,为了保证公平性,要求m个人作为起诉方的价值之和P和作为辩护 ...

  5. HDOJ 5294 Tricks Device 最短路(记录路径)+最小割

    最短路记录路径,同一时候求出最短的路径上最少要有多少条边, 然后用在最短路上的边又一次构图后求最小割. Tricks Device Time Limit: 2000/1000 MS (Java/Oth ...

  6. HDU 2121 Ice_cream’s world II 不定根最小树形图

    题目链接: 题目 Ice_cream's world II Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...

  7. HDU 2121 Ice_cream’s world II 最小树形图 模板

    开始学习最小树形图,模板题. Ice_cream’s world II Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32 ...

  8. [JSOI2008]小店购物 & bzoj4349:最小树形图 最小树形图

    ---题面(洛谷)--- ---题面(bzoj)--- 其实是同一道题,,,样例都一模一样 题解: 一开始看想了好久,,,还想到了最短路和最小生成树,,然而写的时候才意识到最小生成树应该要用无向边 其 ...

  9. kuangbin带你飞 生成树专题 : 次小生成树; 最小树形图;生成树计数

    第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一 ...

随机推荐

  1. 构建大型 Vue.js 项目的10条建议

    下面是我在开发大型 Vue 项目时的最佳实践.这些技巧将帮助你开发更高效.更易于维护和共享的代码. 今年做自由职业的时候,我有机会开发了一些大型 Vue 应用程序.我所说的这些项目,Vuex stor ...

  2. Windows下Apache与PHP的安装与配置

    下载Apache Apache的官网(http://httpd.apache.org) 1.把解压后的Apache拷贝到要安装的目标位置.建议拷贝到C盘根目录下,因为这是其默认设置. 2.我选择的是拷 ...

  3. java编程思想第四版第九章习题

    第三题 package net.mindview.interfaces; abstract class Base{ public Base(){ print(); } abstract void pr ...

  4. nyoj 77-开灯问题 (倍数遍历)

    77-开灯问题 内存限制:64MB 时间限制:3000ms 特判: No 通过数:13 提交数:24 难度:1 题目描述: 有n盏灯,编号为1~n,第1个人把所有灯打开,第2个人按下所有编号为2 的倍 ...

  5. 深度剖析Javascript执行环境、作用域链

    一.执行环境 执行环境(也叫做执行上下文,Execution Context)是Javascript中最为重要的一个概念.执行环境定义了变量或函数有权访问其他数据,决定了它们各自的行为.每个执行环境都 ...

  6. 领扣(LeetCode)检测大写字母 个人题解

    给定一个单词,你需要判断单词的大写使用是否正确. 我们定义,在以下情况时,单词的大写用法是正确的: 全部字母都是大写,比如"USA". 单词中所有字母都不是大写,比如"l ...

  7. firefox浏览器window.event is undefined问题

    获取鼠标坐标,IE下window.event.clientX和window.event.clientY就可以获取x,y的座标了.但是firefox却不行,浏览器报错window.event is un ...

  8. css未知高度垂直居中

    <!doctype html> <html lang="en"> <head> <meta charset="utf-8&quo ...

  9. HTML的标签认识

    <!--      html标签     h1~h6 标题标签(只有1~6,依次减小)     p 段落标签     span 无意义的行标签     div 无意义的块标签     b 加粗 ...

  10. startup启动不起来关于监听的问题

    问题描述:要在sqlplus中启动到startup状态,但是提示我没有监听,本来以为启动一下就可以,但是connecting to一直卡半天,stop都停止不了 1.发现监听有问题,前去更改 SQL& ...