T组数据,给出N,求出N!最右边非零的数。

对于30%的数据,N <= 30,T<=10。

对于全部的数据,N <= 10^2009,T<=30。

一道数学题

解析

N!/(10x)最后一位数字即是结果。10x进行拆分,变成5^x* 2x。怎么除以5x呢,好办,乘的时候含有5的倍数的一项全部不乘进去,再递归此过程。即

1 2 3 4 (15) 6 7 8 9 (25)

11 12 13 14 (35)16 17 18 19 (45)

21 22 23 24 (55) 26 27 28 29 (65) ...

再递归处理

1 2 3 4 (1*5) 6

而且可以发现,不算5倍数一项进去,每十个一组,最末尾结果是一样的:6,且6*6还是6!

接下来的问题,怎么除2^x呢?

分析发现:

2^0 = 1

2^1 = 2

2^2 = 4

2^3 = 8

2^4 =16=(6)

且2,4,6,8乘以6最末尾还是原来的数。所以,可以分析看x%4是多少,若为1,说明原来的结果相当于多乘了一个2(其他的那些2刚好是4的倍数,不影响结果),所以,我们本来是要除以2的,但是很显然对结果再补乘3个2(2^3)即可消除影响,得到正确答案。其他情况同理。至此,思路理顺。

代码

#include<bits/stdc++.h>
using namespace std;
int T,n,ans,mod,rest,x;
bool flag;
const int v[10]={1,1,2,6,4,4,4,8,4,6};
char s[3000];
int a[3000];
const int k[4]={6,8,4,2};
int main(){
scanf("%d",&T);
while(T--){
scanf("%s",s);
memset(a,0,sizeof(a));
n=strlen(s);
for(int i=1;i<=n;++i){
a[i]=s[n-i]-'0';
}
ans=1;
mod=0;
flag=0;
while(1){
rest=0;
ans=(ans*v[a[1]])%10;
if(n>1) ans=(ans*6)%10;
for(int i=n;i>=1;i--){
x=rest*10+a[i];
rest=x%5;a[i]=x/5;
}
while((n>0)&&(a[n]==0)) n--;
if(n==0) break;
flag=true;
mod=(mod+a[2]*10+a[1])%4;
}
if(flag) ans=(ans*k[mod])%10;
printf("%d\n",ans);
}
return 0;
}

yzoj P1122 阶乘 题解的更多相关文章

  1. yzoj P1126 塔 题解

    题意:给n个积木,搭成两个高度相同的塔,问最高高度 正解是dp 答案在dp[n][0] 代码 #include<bits/stdc++.h> using namespace std; in ...

  2. 洛谷P1661 & yzoj 1650 扩散 题解

    题意 先讲一下一种容易陷入误区错误思路 要使时间最小,就去找相对于每个点的最短曼哈顿距离,然后取最大值,时间就是(maxn+1)/2. 代码 #include<cstring> #incl ...

  3. [USACO07OCT]障碍路线 & yzoj P1130 拐弯 题解

    题意 给出n* n 的图,A为起点,B为终点,* 为障碍,.可以行走,问最少需要拐90度的弯多少次,无法到达输出-1. 解析 思路:构造N * M * 4个点,即将原图的每个点分裂成4个点.其中点(i ...

  4. yzoj P2345 战争 题解

    纯数论 30分:纯暴力,直接模拟判断t秒后,判断hp是否小于0 60分: atk>=h,就是一炮一个,那么军队会在min(n,t)秒之后停止攻击,那么总伤害就是a[n+(n-1) +(n-2)+ ...

  5. yzoj P2371 爬山 题解

    背景 其实 Kano 曾经到过由乃⼭,当然这名字⼀看⼭主就是 Yuno 嘛.当年 Kano 看见了由乃⼭,内⼼突然涌出了⼀股杜甫会当凌绝顶,⼀览众⼭⼩的 豪⽓,于是毅然决定登⼭.但是 Kano 总是习 ...

  6. 2019 Multi-University Training Contest 2: 1010 Just Skip The Problem 自闭记

    2019 Multi-University Training Contest 2: 1010 Just Skip The Problem 自闭记 题意 多测.每次给你一个数\(n\),你可以同时问无数 ...

  7. 洛谷 P2388 阶乘之乘 题解

    本蒟蒻又来发题解了QwQ; 看到这个题目,本蒟蒻第一眼就想写打个暴力: 嗯,坏习惯: 但是,动动脑子想一想就知道,普通的的暴力是过不了的: 但是,身为蒟蒻的我,也想不出什么高级的数学方法来优化: 好, ...

  8. 洛谷题解 P1134 【阶乘问题】

    原题传送门 题目描述 也许你早就知道阶乘的含义,N阶乘是由1到N相乘而产生,如: 12!=1×2×3×4×5×6×7×8×9×10×11×12=479,001,600 12的阶乘最右边的非零位为6. ...

  9. 【题解】p2388阶乘之乘

    原题传送门 题解一堆\(O(n)\)算法真给我看傻了. 考虑\(10=2*5\),因子2肯定更多,所以计算因子5的个数即可. 从5到n这\(n-5+1\)个数的阶乘里面,都各自含有一个因子\(5=1* ...

随机推荐

  1. 定时延时设计FPGA

    以50MHZ时钟为例,进行1秒钟延时,并输出延时使能信号. 首先计算需要多少次计时,MHZ=10的六次方HZ.T=20ns 一秒钟需要计时次数为5的七次方即5000_0000. 然后计算需要几位的寄存 ...

  2. 微服务世界之Nacos初见

    Nacos 1.概要 Dubbo 服务的注册和发现/rpc通信/负载均衡/限流/熔断/降级 Spring Cloud alibaba 服务注册发现中间件 zookeeper/eureka/consul ...

  3. 一次简单的SQL手工注入

    1. 首先要了解SQL注入的原理:   SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令. 具体来说,它是利 ...

  4. RocketMQ中Broker的刷盘源码分析

    上一篇博客的最后简单提了下CommitLog的刷盘  [RocketMQ中Broker的消息存储源码分析] (这篇博客和上一篇有很大的联系) Broker的CommitLog刷盘会启动一个线程,不停地 ...

  5. 【Java笔记】【Java核心技术卷1】chapter3 D3数据类型

    package chapter3; public class D3数据类型 { public static void main(String[] arg) { //Java 整型(字节数不会随硬件变化 ...

  6. 消息中间件-activemq实战之消息持久化(六)

    对于activemq消息的持久化我们在第二节的时候就简单介绍过,今天我们详细的来分析一下activemq的持久化过程以及持久化插件.在生产环境中为确保消息的可靠性,我们肯定的面临持久化消息的问题,今天 ...

  7. HTML/CSS:图片居中(水平居中和垂直居中)

    css图片居中(水平居中和垂直居中) css图片居中分css图片水平居中和垂直居中两种情况,有时候还需要图片同时水平垂直居中, 下面分几种居中情况分别介绍: css图片水平居中 1.利用margin: ...

  8. Ubuntu : apt-get 命令

    apt-get 命令是 Ubuntu 系统中的包管理工具,可以用来安装.卸载包,也可以用来升级包,还可以用来把系统升级到新的版本.本文介绍 apt-get 命令的基本用法,演示环境为 Ubuntu 1 ...

  9. java字符串详解

    一.String 类的定义 public final class String implements java.io.Serializable, Comparable<String>, C ...

  10. Vue-Router中History模式

    目录 history路由 官方示例 Express中间件 客户端兜底404 示例代码托管在:http://www.github.com/dashnowords/blogs 博客园地址:<大史住在 ...