1. 单向边  + 新图建边

int belong[N], dfn[N], low[N], now_time, scc_cnt;
stack<int> s;
void dfs(int u){
dfn[u] = low[u] = ++now_time;
s.push(u);
for(int i = head[u]; ~i; i = nt[i]){
if(!dfn[to[i]]) dfs(to[i]);
if(!belong[to[i]]) low[u] = min(low[u], low[to[i]]);
}
if(dfn[u] == low[u]){
++scc_cnt;
int now;
while(){
now = s.top(); s.pop();
belong[now] = scc_cnt;
if(now == u) break;
}
}
}
void scc(int n){
now_time = scc_cnt = ;
for(int i = ; i <= n; ++i)
if(!belong[i]) dfs(i);
int v;
for(int i = ; i <= n; ++i){
for(int j = head[i]; ~j; j=nt[j]){
v = to[j];
if(belong[v] != belong[i]){
vc[belong[i]].pb(belong[v]);
}
}
}
}

2.双向边 + 新图建边

int belong[N], dfn[N], low[N], now_time, scc_cnt;
vector<int> vc[N];
vector<pll> e[N];
stack<int> s;
void dfs(int u, int id){
dfn[u] = low[u] = ++now_time;
s.push(u);
for(int i = head[u]; ~i; i = nt[i]){
if(i == (id^)) continue;
if(!dfn[to[i]]) dfs(to[i], i);
if(!belong[to[i]]) low[u] = min(low[u], low[to[i]]);
}
if(dfn[u] == low[u]){
++scc_cnt;
int now;
while(){
now = s.top(); s.pop();
belong[now] = scc_cnt;
if(now == u) break;
}
}
}
void scc(int n){
for(int i = ; i <= n; ++i) dfn[i] = low[i] = belong[i] = ;
while(!s.empty()) s.pop();
now_time = scc_cnt = ;
for(int i = ; i <= n; ++i)
if(!belong[i]) dfs(i, -);
for(int i = , u, v; i < tot; i += ){
u = to[i], v = to[i+];
u = belong[u], v = belong[v];
if(u != v) e[u].pb(pll(v,i/+)), e[v].pb(pll(u,i/+));
}
}

3.边双连通分量。

  边双连通就是没有一个桥。

  桥的定义就是断开这个边能使得图分为2部分。

  先找到桥, 然后再dfs不经过桥所能到达的点都是同一个边双联通分量。  

int dfn[N], low[N], dtot;
void Tarjan(int o, int u){
dfn[u]= low[u] = ++dtot;
for(int i = head[u]; ~i; i = nt[i]){
int v = to[i];
if(!dfn[v]){
Tarjan(u, v);
low[u] = min(low[u], low[v]);
if(low[v] > dfn[u])
bridge[i] = bridge[i^] = ;
}
else if(v != o)
low[u] = min(low[u], dfn[v]);
}
}
int c[N], dcc;
void dfs(int u){
c[u] = dcc;
for(int i = head[u]; i; i = nt[i]){
int v = to[i];
if(c[v] || bridge[i]) continue;
dfs(v);
}
}
int ok[N];
vector<pll> vc[N];
void e_dcc(){
for(int i = ; i <= n; ++i)
if(!dfn[i]) Tarjan(, i);
for(int i = ; i <= n; ++i)
if(!c[i]) {
++dcc;
dfs(i);
}
for(int i = ; i <= tot; i += ){
int u = to[i^], v = to[i];
u = c[u], v = c[v];
if(u == v){
ok[u] |= val[i];
}
else {
vc[u].pb({v,val[i]});
vc[v].pb({u,val[i]});
}
}
}

模板汇总——Tarjian的更多相关文章

  1. 单元最短路径算法模板汇总(Dijkstra, BF,SPFA),附链式前向星模板

    一:dijkstra算法时间复杂度,用优先级队列优化的话,O((M+N)logN)求单源最短路径,要求所有边的权值非负.若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的 ...

  2. 【模板】NOIP模板汇总

    图论 数据结构 数学 其他: 洛谷模板:a,b两个字符串,求b串在a串中出现的位置 #include<iostream> #include<cstdio> #include&l ...

  3. 模板汇总——KMP & EX-KMP

    1. kmp 相当于往前求出一段字符信息,使得 这段字符信息和前缀相等. void getnext(){ , j = ; nx[] = -; while(j < m){ || b[j] == b ...

  4. 模板汇总——AC自动机

    AC自动机 模板题 HDU-2222 Keywords Search #include<bits/stdc++.h> using namespace std; #define LL lon ...

  5. python实现AES/DES/RSA/MD5/SM2/SM4/3DES加密算法模板汇总

    都是作者累积的,且看其珍惜,大家可以尽量可以保存一下,如果转载请写好出处https://www.cnblogs.com/pythonywy 一.md5加密 1.简介 这是一种使用非常广泛的加密方式,不 ...

  6. 【模板】Tarjian求LCA

    概念 公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点 举个例子吧,如下图所示4和5的最近公共祖先是2,5和3的最近公共祖先是1,2和1的最近公共祖先是1. 算法 常用的求LCA的算法有:Ta ...

  7. 【POJ各种模板汇总】(写在逆风省选前)(不断更新中)

    1.POJ1258 水水的prim……不过poj上硬是没过,wikioi上的原题却过了 #include<cstring> #include<algorithm> #inclu ...

  8. 模板汇总——treap

    1. 旋转treap. 思想:一颗权值BST + 一颗 随机数 最小堆. BZOJ - 3224 代码: #include<bits/stdc++.h> using namespace s ...

  9. 模板汇总——splay

    #define lch(x) tr[x].son[0] #define rch(x) tr[x].son[1] ; , root; struct Node{ ], pre, sz; void init ...

随机推荐

  1. 20190803 NOIP模拟测试12「斐波那契(fibonacci)· 数颜色 · 分组 」

    164分 rank11/64 这次考的不算太差,但是并没有多大的可能性反超(只比一小部分人高十几分而已),时间分配还是不均,T2两个半小时,T1半个小时,T3-额十几分钟吧 然额付出总是与回报成反比的 ...

  2. 有容云-【原理】Docker存储驱动之AUFS

    编者按:今天聊一聊Docker的Image(镜像)与Container(容器)的存储以及存储驱动之AUFS.   Docker存储驱动简介 Docker内置多种存储驱动,每种存储驱动都是基于Linux ...

  3. 9-1、大型项目的接口自动化实践记录----数据库结果、JSON对比

    上一篇写了如何从DB获取预期.实际结果,这一篇分别对不同情况说下怎么进行对比. PS:这部分在JSON对比中也适用. 1.结果只有一张表,只有一条数据 数据格式:因为返回的是dicts_list的格式 ...

  4. 神奇的 SQL 之子查询,细节满满 !

    前言 开心一刻 有一天,麻雀遇见一只乌鸦. 麻雀问:你是啥子鸟哟 ? 乌鸦说:我是凤凰. 麻雀说:哪有你龟儿子这么黢黑的凤凰 ? 乌鸦说:你懂个铲铲,老子是烧锅炉的凤凰. 子查询 讲子查询之前,我们先 ...

  5. Netty基础系列(4) --堆外内存与零拷贝详解

    前言 到目前为止,我们知道Nio当中有三个最最核心的组件,分别是:Selelctor,Channel,Buffer.在Netty基础系列(3) --彻底理解NIO 这一篇文章中只是进行了大致的介绍. ...

  6. 2019最新最全Java开发面试常见问题答案总结

    2019最新最全Java开发面试常见问题答案总结 马上准备9月份出去面试Java开发,自己学习丢西瓜捡芝麻,学了的都忘了,所以有机会自己做个学习笔记,摘录自各个博文以及总结. 1.JAVA面向对象的特 ...

  7. java8(二)方法引用

    方法引用让你可以重复使用现有的方法定义,并像 Lambda 一样进行传递. 方法引用可以被看作仅仅调用特定方法的 Lambda 的一种快捷写法. 事实上,方法引用就是让你根据已有的方法实现来创建 La ...

  8. mysql的引擎问题,主键和外键的创建问题,以及创建外键不成功,却创建了一个索引

    mysql的引擎问题: 需要知道的三个引擎:InnoDB--是一个事务处理引擎,不支持全文检索,支持事务操作,即DML操作: Memory--是一个数据存储在内存,速度很快,功能上等同于MyIsam, ...

  9. AutoCAD二次开发(.Net)之获取LSP变量的值

    //https://blog.csdn.net/qq_21489689/article/details/78973787 [System.Security.SuppressUnmanagedCodeS ...

  10. Java 调用http接口(基于OkHttp的Http工具类方法示例)

    目录 Java 调用http接口(基于OkHttp的Http工具类方法示例) OkHttp3 MAVEN依赖 Http get操作示例 Http Post操作示例 Http 超时控制 工具类示例 Ja ...