1. 单向边  + 新图建边

int belong[N], dfn[N], low[N], now_time, scc_cnt;
stack<int> s;
void dfs(int u){
dfn[u] = low[u] = ++now_time;
s.push(u);
for(int i = head[u]; ~i; i = nt[i]){
if(!dfn[to[i]]) dfs(to[i]);
if(!belong[to[i]]) low[u] = min(low[u], low[to[i]]);
}
if(dfn[u] == low[u]){
++scc_cnt;
int now;
while(){
now = s.top(); s.pop();
belong[now] = scc_cnt;
if(now == u) break;
}
}
}
void scc(int n){
now_time = scc_cnt = ;
for(int i = ; i <= n; ++i)
if(!belong[i]) dfs(i);
int v;
for(int i = ; i <= n; ++i){
for(int j = head[i]; ~j; j=nt[j]){
v = to[j];
if(belong[v] != belong[i]){
vc[belong[i]].pb(belong[v]);
}
}
}
}

2.双向边 + 新图建边

int belong[N], dfn[N], low[N], now_time, scc_cnt;
vector<int> vc[N];
vector<pll> e[N];
stack<int> s;
void dfs(int u, int id){
dfn[u] = low[u] = ++now_time;
s.push(u);
for(int i = head[u]; ~i; i = nt[i]){
if(i == (id^)) continue;
if(!dfn[to[i]]) dfs(to[i], i);
if(!belong[to[i]]) low[u] = min(low[u], low[to[i]]);
}
if(dfn[u] == low[u]){
++scc_cnt;
int now;
while(){
now = s.top(); s.pop();
belong[now] = scc_cnt;
if(now == u) break;
}
}
}
void scc(int n){
for(int i = ; i <= n; ++i) dfn[i] = low[i] = belong[i] = ;
while(!s.empty()) s.pop();
now_time = scc_cnt = ;
for(int i = ; i <= n; ++i)
if(!belong[i]) dfs(i, -);
for(int i = , u, v; i < tot; i += ){
u = to[i], v = to[i+];
u = belong[u], v = belong[v];
if(u != v) e[u].pb(pll(v,i/+)), e[v].pb(pll(u,i/+));
}
}

3.边双连通分量。

  边双连通就是没有一个桥。

  桥的定义就是断开这个边能使得图分为2部分。

  先找到桥, 然后再dfs不经过桥所能到达的点都是同一个边双联通分量。  

int dfn[N], low[N], dtot;
void Tarjan(int o, int u){
dfn[u]= low[u] = ++dtot;
for(int i = head[u]; ~i; i = nt[i]){
int v = to[i];
if(!dfn[v]){
Tarjan(u, v);
low[u] = min(low[u], low[v]);
if(low[v] > dfn[u])
bridge[i] = bridge[i^] = ;
}
else if(v != o)
low[u] = min(low[u], dfn[v]);
}
}
int c[N], dcc;
void dfs(int u){
c[u] = dcc;
for(int i = head[u]; i; i = nt[i]){
int v = to[i];
if(c[v] || bridge[i]) continue;
dfs(v);
}
}
int ok[N];
vector<pll> vc[N];
void e_dcc(){
for(int i = ; i <= n; ++i)
if(!dfn[i]) Tarjan(, i);
for(int i = ; i <= n; ++i)
if(!c[i]) {
++dcc;
dfs(i);
}
for(int i = ; i <= tot; i += ){
int u = to[i^], v = to[i];
u = c[u], v = c[v];
if(u == v){
ok[u] |= val[i];
}
else {
vc[u].pb({v,val[i]});
vc[v].pb({u,val[i]});
}
}
}

模板汇总——Tarjian的更多相关文章

  1. 单元最短路径算法模板汇总(Dijkstra, BF,SPFA),附链式前向星模板

    一:dijkstra算法时间复杂度,用优先级队列优化的话,O((M+N)logN)求单源最短路径,要求所有边的权值非负.若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的 ...

  2. 【模板】NOIP模板汇总

    图论 数据结构 数学 其他: 洛谷模板:a,b两个字符串,求b串在a串中出现的位置 #include<iostream> #include<cstdio> #include&l ...

  3. 模板汇总——KMP & EX-KMP

    1. kmp 相当于往前求出一段字符信息,使得 这段字符信息和前缀相等. void getnext(){ , j = ; nx[] = -; while(j < m){ || b[j] == b ...

  4. 模板汇总——AC自动机

    AC自动机 模板题 HDU-2222 Keywords Search #include<bits/stdc++.h> using namespace std; #define LL lon ...

  5. python实现AES/DES/RSA/MD5/SM2/SM4/3DES加密算法模板汇总

    都是作者累积的,且看其珍惜,大家可以尽量可以保存一下,如果转载请写好出处https://www.cnblogs.com/pythonywy 一.md5加密 1.简介 这是一种使用非常广泛的加密方式,不 ...

  6. 【模板】Tarjian求LCA

    概念 公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点 举个例子吧,如下图所示4和5的最近公共祖先是2,5和3的最近公共祖先是1,2和1的最近公共祖先是1. 算法 常用的求LCA的算法有:Ta ...

  7. 【POJ各种模板汇总】(写在逆风省选前)(不断更新中)

    1.POJ1258 水水的prim……不过poj上硬是没过,wikioi上的原题却过了 #include<cstring> #include<algorithm> #inclu ...

  8. 模板汇总——treap

    1. 旋转treap. 思想:一颗权值BST + 一颗 随机数 最小堆. BZOJ - 3224 代码: #include<bits/stdc++.h> using namespace s ...

  9. 模板汇总——splay

    #define lch(x) tr[x].son[0] #define rch(x) tr[x].son[1] ; , root; struct Node{ ], pre, sz; void init ...

随机推荐

  1. Android Studio项目/Flutter 案例中Gradle报错通用解决方案(包括Unable to tunnel through proxy问题)

    目录 Step 1:修改Gradle版本为本地版本 Step 2:修改classpath为Android Studio版本 Step 3:关闭代理 Step 1:修改Gradle版本为本地版本     ...

  2. Thread.Sleep太久,界面卡死

    在Winform程序的UI界面使用Thread.Sleep,窗体界面会被卡死,如图1所示,程序sleep 5000毫秒,时间到了之后,按钮的名称才更改过来,窗体也能被鼠标拖动.而用Delay方法,就能 ...

  3. 字符串(String、StringBuffer、StringBuilder)进阶分析

    转载自https://segmentfault.com/a/1190000002683782 我们先要记住三者的特征: String 字符串常量 StringBuffer 字符串变量(线程安全) St ...

  4. 基于http(s)协议的模板化爬虫设计

    声明:本文为原创,转载请注明出处 本文总共三章,前面两章废话吐槽比较多,想看结果的话,直接看第三章(后续会更新,最近忙着毕设呢,毕设也是我自己做的,关于射频卡的,有时间我也放上来,哈哈). 一,系统总 ...

  5. JNDI----数据连接池

    JNDI:提供了查找和访问各种命名和目录服务的通用,统一的接口 常用的配置属性:   name:表示以后要查找的名称.通过此名称可以找到DataSource,此名称任意更换,但是程序中最终要查找的就是 ...

  6. Promise 学习心得

    当了这么久码农到今天没事才开始去深究 Promise 这个对象 什么是 Promise, Promise 有什么用? 在写代码的时候多多少少都有遇见过地狱式的回调 代码看起来没问题就是有点乱,Prom ...

  7. Mermaid

    graph TD; A-->B; A-->C; B-->D; C-->D;

  8. bootstrape select使用小结

    看看上面的效果是bootstrape使用的效果.虽然不是很好看,但是符合bootstrape的风格.来看看普通的select的样式 bootstrape下的select和普通select在bootst ...

  9. websql操作类封装

    在之前,我写了一个websql的封装类库,代码如下: (function(win) { function smpWebSql(options){ options = options || {}; th ...

  10. Yii GridView Ajax 刷新

    Yii GridView  Ajax 刷新,当页面点击一个按钮时,刷新数据. 1.控制器 <?php class privController extends Controller{ publi ...