1. 单向边  + 新图建边

int belong[N], dfn[N], low[N], now_time, scc_cnt;
stack<int> s;
void dfs(int u){
dfn[u] = low[u] = ++now_time;
s.push(u);
for(int i = head[u]; ~i; i = nt[i]){
if(!dfn[to[i]]) dfs(to[i]);
if(!belong[to[i]]) low[u] = min(low[u], low[to[i]]);
}
if(dfn[u] == low[u]){
++scc_cnt;
int now;
while(){
now = s.top(); s.pop();
belong[now] = scc_cnt;
if(now == u) break;
}
}
}
void scc(int n){
now_time = scc_cnt = ;
for(int i = ; i <= n; ++i)
if(!belong[i]) dfs(i);
int v;
for(int i = ; i <= n; ++i){
for(int j = head[i]; ~j; j=nt[j]){
v = to[j];
if(belong[v] != belong[i]){
vc[belong[i]].pb(belong[v]);
}
}
}
}

2.双向边 + 新图建边

int belong[N], dfn[N], low[N], now_time, scc_cnt;
vector<int> vc[N];
vector<pll> e[N];
stack<int> s;
void dfs(int u, int id){
dfn[u] = low[u] = ++now_time;
s.push(u);
for(int i = head[u]; ~i; i = nt[i]){
if(i == (id^)) continue;
if(!dfn[to[i]]) dfs(to[i], i);
if(!belong[to[i]]) low[u] = min(low[u], low[to[i]]);
}
if(dfn[u] == low[u]){
++scc_cnt;
int now;
while(){
now = s.top(); s.pop();
belong[now] = scc_cnt;
if(now == u) break;
}
}
}
void scc(int n){
for(int i = ; i <= n; ++i) dfn[i] = low[i] = belong[i] = ;
while(!s.empty()) s.pop();
now_time = scc_cnt = ;
for(int i = ; i <= n; ++i)
if(!belong[i]) dfs(i, -);
for(int i = , u, v; i < tot; i += ){
u = to[i], v = to[i+];
u = belong[u], v = belong[v];
if(u != v) e[u].pb(pll(v,i/+)), e[v].pb(pll(u,i/+));
}
}

3.边双连通分量。

  边双连通就是没有一个桥。

  桥的定义就是断开这个边能使得图分为2部分。

  先找到桥, 然后再dfs不经过桥所能到达的点都是同一个边双联通分量。  

int dfn[N], low[N], dtot;
void Tarjan(int o, int u){
dfn[u]= low[u] = ++dtot;
for(int i = head[u]; ~i; i = nt[i]){
int v = to[i];
if(!dfn[v]){
Tarjan(u, v);
low[u] = min(low[u], low[v]);
if(low[v] > dfn[u])
bridge[i] = bridge[i^] = ;
}
else if(v != o)
low[u] = min(low[u], dfn[v]);
}
}
int c[N], dcc;
void dfs(int u){
c[u] = dcc;
for(int i = head[u]; i; i = nt[i]){
int v = to[i];
if(c[v] || bridge[i]) continue;
dfs(v);
}
}
int ok[N];
vector<pll> vc[N];
void e_dcc(){
for(int i = ; i <= n; ++i)
if(!dfn[i]) Tarjan(, i);
for(int i = ; i <= n; ++i)
if(!c[i]) {
++dcc;
dfs(i);
}
for(int i = ; i <= tot; i += ){
int u = to[i^], v = to[i];
u = c[u], v = c[v];
if(u == v){
ok[u] |= val[i];
}
else {
vc[u].pb({v,val[i]});
vc[v].pb({u,val[i]});
}
}
}

模板汇总——Tarjian的更多相关文章

  1. 单元最短路径算法模板汇总(Dijkstra, BF,SPFA),附链式前向星模板

    一:dijkstra算法时间复杂度,用优先级队列优化的话,O((M+N)logN)求单源最短路径,要求所有边的权值非负.若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的 ...

  2. 【模板】NOIP模板汇总

    图论 数据结构 数学 其他: 洛谷模板:a,b两个字符串,求b串在a串中出现的位置 #include<iostream> #include<cstdio> #include&l ...

  3. 模板汇总——KMP & EX-KMP

    1. kmp 相当于往前求出一段字符信息,使得 这段字符信息和前缀相等. void getnext(){ , j = ; nx[] = -; while(j < m){ || b[j] == b ...

  4. 模板汇总——AC自动机

    AC自动机 模板题 HDU-2222 Keywords Search #include<bits/stdc++.h> using namespace std; #define LL lon ...

  5. python实现AES/DES/RSA/MD5/SM2/SM4/3DES加密算法模板汇总

    都是作者累积的,且看其珍惜,大家可以尽量可以保存一下,如果转载请写好出处https://www.cnblogs.com/pythonywy 一.md5加密 1.简介 这是一种使用非常广泛的加密方式,不 ...

  6. 【模板】Tarjian求LCA

    概念 公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点 举个例子吧,如下图所示4和5的最近公共祖先是2,5和3的最近公共祖先是1,2和1的最近公共祖先是1. 算法 常用的求LCA的算法有:Ta ...

  7. 【POJ各种模板汇总】(写在逆风省选前)(不断更新中)

    1.POJ1258 水水的prim……不过poj上硬是没过,wikioi上的原题却过了 #include<cstring> #include<algorithm> #inclu ...

  8. 模板汇总——treap

    1. 旋转treap. 思想:一颗权值BST + 一颗 随机数 最小堆. BZOJ - 3224 代码: #include<bits/stdc++.h> using namespace s ...

  9. 模板汇总——splay

    #define lch(x) tr[x].son[0] #define rch(x) tr[x].son[1] ; , root; struct Node{ ], pre, sz; void init ...

随机推荐

  1. Selenium+java - 下拉框处理

    常见下拉框也分两种:一种是标准控件和非标准控件(一般为前端开发人员自己封装的下拉框),本篇文章中将重点讲解标准下拉框操作. 1.Select提供了三种选择某一项的方法 select.selectByI ...

  2. poj 1455 Crazy tea party

    这道题第一眼看去很难,其实不然,短短几行代码就搞定了. 说一下大概思路,如果是排成一排的n个人,如 1 2 3 4 5 6 7 8 我们要变成 8 7 6 5 4 3 2 1 需要交换 28次,找规律 ...

  3. spring boot中的声明式事务管理及编程式事务管理

    这几天在做一个功能,具体的情况是这样的: 项目中原有的几个功能模块中有数据上报的功能,现在需要在这几个功能模块的上报之后生成一条消息记录,然后入库,在写个接口供前台来拉取消息记录. 看到这个需求,首先 ...

  4. Android 属性动画实战

    什么是属性动画? 属性动画可以通过直接更改 View 的属性来实现 View 动画.例如: 通过不断的更改 View 的坐标来实现让 View 移动的效果: 通过不断的更改 View 的背景来实现让 ...

  5. Button 使用详解

    极力推荐文章:欢迎收藏 Android 干货分享 阅读五分钟,每日十点,和您一起终身学习,这里是程序员Android 本篇文章主要介绍 Android 开发中的部分知识点,通过阅读本篇文章,您将收获以 ...

  6. 用vue2.0+vuex+vue-router+element-ui+mockjs实现后台管理系统的实践探索

    A magical vue element touzi admin. 效果演示地址 更多demo展示 分支说明 master分支:前后端统一开发的版本:可以用于学习nodejs+mongodb+exp ...

  7. JVM运行时数据区--深入理解Java虚拟机 读后感

    程序计数器 程序计数器是线程私有的区域,很好理解嘛~,每个线程当然得有个计数器记录当前执行到那个指令.占用的内存空间小,可以把它看成是当前线程所执行的字节码的行号指示器.如果线程在执行Java方法,这 ...

  8. java中什么是继承笔记

    继承 怎样实现继承:1,先提取共有的属性和方法,放到一个类里,这个叫父类.基类.超类        2.编写子类 修饰符 class 子类名 extends 父类名 好处:提高代码的复用性 子类怎么去 ...

  9. 【CodeForces - 1200A】Hotelier(水题、模拟)

    Hotelier 直接翻译了 Descriptions Amugae的酒店由10人组成10客房.房间从0开始编号0到99 从左到右. 酒店有两个入口 - 一个来自左端,另一个来自右端.当顾客通过左入口 ...

  10. Shell脚本书写规范

    在日常的运维工作中,Shell脚本肯定是必不可少的工作内容.为方便问题排查.脚本执行历史问题追踪.方便大家共同维护,从网上搜罗结合以往的经验教训拟定以下Bash脚本书写规范.欢迎各位同学指正或补充. ...