Aizu-2249 Road Construction(dijkstra求最短路)
题意:国王本来有一个铺路计划,后来发现太贵了,决定删除计划中的某些边,但是有2个原则,1:所有的城市必须能达到。 2:城市与首都(1号城市)之间的最小距离不能变大。 并且在这2个原则下使得建路消耗最小。
题解:现在来分析一下,使得n个点联通至少需要n-1条路,然后因为求最小消耗,所以路最多也就只有n-1条,除了首都以外,每一个都市都对应着一条路,我们只需要在dijkstra求最短路的时候,每次更新最短路的距离就更新这个点所对应的边,最后每个城市的点对应的边就是符合要求的边,最后求和一下就是答案了。
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<functional>
using namespace std;
#define ll long long
typedef pair<int, int> pll;
const int INF = 0x3f3f3f3f;
const int N = +;
struct Node
{
int nt, to, d, c;
}Edge[N*];
int head[N], dis[N], pre[N];
int cnt = , n, m;
void add(int u, int v, int d, int c)
{
Edge[cnt].to = v;
Edge[cnt].d = d;
Edge[cnt].c = c;
Edge[cnt].nt = head[u];
head[u] = cnt++;
}
void dijkstra()
{
memset(dis, INF, sizeof(dis));
dis[] = ;
priority_queue<pll, vector<pll>, greater<pll> > q;
q.push(pll(,));
while(!q.empty())
{
int u = q.top().second, d = q.top().first;
q.pop();
if(dis[u] != d) continue;
for(int i = head[u]; ~i; i = Edge[i].nt)
{
int v = Edge[i].to;
if(dis[v] > dis[u] + Edge[i].d)
{
dis[v] = dis[u] + Edge[i].d;
pre[v] = i;
q.push(pll(dis[v],v));
}
else if(dis[v] == dis[u]+Edge[i].d && Edge[i].c < Edge[pre[v]].c)
{
pre[v] = i;
q.push(pll(dis[v],v));
}
}
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie();
cout.tie();
while(cin >> n >> m, n+m)
{
memset(head, -, sizeof(head));
cnt = ;
int x, y, d, c;
for(int i = ; i < m; i++)
{
cin >> x >> y >> d >> c;
add(x,y,d,c);
add(y,x,d,c);
}
dijkstra();
ll ans = ;
for(int i = ; i <= n; i++)
{
ans += Edge[pre[i]].c;
}
cout << ans << endl;
}
return ;
}
Aizu-2249 Road Construction(dijkstra求最短路)的更多相关文章
- Aizu - 2249 Road Construction
题目:给出若干个建筑之间的一些路,每条路都有对应的长度和需要的花费,问在保证源点1到其他个点的距离最短的情况下,最少的花费是多少/ 思路:和一般的最短路问题相比,多了一个 数组id[i],用来记录到达 ...
- 关于dijkstra求最短路(模板)
嗯.... dijkstra是求最短路的一种算法(废话,思维含量较低, 并且时间复杂度较为稳定,为O(n^2), 但是注意:!!!! 不能处理边权为负的情况(但SPFA可以 ...
- ACM - 最短路 - AcWing 849 Dijkstra求最短路 I
AcWing 849 Dijkstra求最短路 I 题解 以此题为例介绍一下图论中的最短路算法.先让我们考虑以下问题: 给定一个 \(n\) 个点 \(m\) 条边的有向图(无向图),图中可能存在重边 ...
- AOJ 2249 Road Construction (dijkstra)
某国王需要修路,王国有一个首都和多个城市,需要修路.已经有修路计划了,但是修路费用太高. 为了减少修路费用,国王决定从计划中去掉一些路,但是需要满足一下两点: 保证所有城市都能连通 所有城市到首都的最 ...
- AOJ 2249 Road Construction(Dijkstra+优先队列)
[题目大意] http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2249 [题目大意] 一张无向图,建造每条道路需要的费用已经给出, 现 ...
- 850. Dijkstra求最短路 II
给定一个n个点m条边的有向图,图中可能存在重边和自环,所有边权均为正值. 请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出-1. 输入格式 第一行包含整数n和m. 接下来m行每行包 ...
- 849. Dijkstra求最短路 I
给定一个n个点m条边的有向图,图中可能存在重边和自环,所有边权均为正值. 请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出-1. 输入格式 第一行包含整数n和m. 接下来m行每行包 ...
- POJ-2387(原始dijkstra求最短路)
Til the Cows Come Home POJ-2387 这题是最简单的最短路求解题,主要就是使用dijkstra算法,时间复杂度是\(O(n^2)\). 需要注意的是,一定要看清楚题目的输入要 ...
- Dijkstra求次短路
#10076.「一本通 3.2 练习 2」Roadblocks:https://loj.ac/problem/10076 解法: 次短路具有一种性质:次短路一定是由起点到点x的最短路 + x到y的距离 ...
随机推荐
- .NET加水印/验证码的NuGet包
.NET加水印/验证码的NuGet包 我的在前两篇文章(水印,验证码)中,我介绍了使用Direct2D给图片加水印/验证码,今天我将其进行了封装,发布了一个NuGet包Sdcb.Imaging: &l ...
- Handler 使用详解
极力推荐文章:欢迎收藏 Android 干货分享 阅读五分钟,每日十点,和您一起终身学习,这里是程序员Android 本篇文章主要介绍 Android 开发中的部分知识点,通过阅读本篇文章,您将收获以 ...
- 面向对象---prototype、__proto__、实例化对象三者之间的关系
1.构造函数 a.什么是构造函数? 解释:通过关键字new 创建的函数叫做构造函数 作用:用来创建一个对象 废话少说直接上代码,首先我们还是创建一个构造函数人类 然后我们在创建两个实例,一个凡尘 一个 ...
- 手摸手,带你用vue实现后台管理权限系统及顶栏三级菜单显示
手摸手,带你用vue实现后台管理权限系统及顶栏三级菜单显示 效果演示地址 项目demo展示 重要功能总结 权限功能的实现 权限路由思路: 根据用户登录的roles信息与路由中配置的roles信息进行比 ...
- Activiti6系列(4)- 三个war包的数据源及密码修改
一.activiti-app修改数据源和密码 1.使用sublimetext工具打开tomcat,方便进行配置文件的修改. 找到被解压的war包,activiti-app/WEB-INF/classe ...
- SpringBoot-Admin的使用
[**前情提要**]Spring Boot Actuator 提供了对单个 Spring Boot 应用的监控,信息包含应用状态.内存.线程.堆栈等,比较全面的监控了 Spring Boot 应用的整 ...
- CSS3: @font-face 介绍与使用
@font-face 是CSS3中的一个模块,他主要是把自己定义的Web字体嵌入到你的网页中,随着@font-face模块的出现,我们在Web的开发中使用字体不怕只能使用Web安全字体,你们当中或许有 ...
- 给面试官讲明白:一致性Hash的原理和实践
"一致性hash的设计初衷是解决分布式缓存问题,它不仅能起到hash作用,还可以在服务器宕机时,尽量少地迁移数据.因此被广泛用于状态服务的路由功能" 01分布式系统的路由算法 假设 ...
- 剑指offer-链表
1. 链表中环的入口节点 给一个链表,若其中包含环,请找出该链表的环的入口结点,否则,输出null. 思路一:用哈希表存已经遍历过的节点,O(1)复杂度查找,如果再次遇到就是环入口 # -*- cod ...
- 【0730 | Day 4】Python基础(二)
Part 7 数据类型基础 一.什么是数据类型? 我们要和计算机进行交流,那么彼此肯定需要进行信息交互.我们想要让计算机认识我们,需要提供我们的身高.体重以及爱好等等.那么,不同的数据分别对应不同的数 ...