转自——http://blog.csdn.net/qq_33399185/article/details/60872853,非常感谢大神的整理!

还有图片版,转自——https://zhuanlan.zhihu.com/p/27878128

导入数据

  • pd.read_csv(filename):从CSV文件导入数据
  • pd.read_table(filename):从限定分隔符的文本文件导入数据
  • pd.read_excel(filename):从Excel文件导入数据
  • pd.read_sql(query, connection_object):从SQL表/库导入数据
  • pd.read_json(json_string):从JSON格式的字符串导入数据
  • pd.read_html(url):解析URL、字符串或者HTML文件,抽取其中的tables表格
  • pd.read_clipboard():从你的粘贴板获取内容,并传给read_table()
  • pd.DataFrame(dict):从字典对象导入数据,Key是列名,Value是数据

导出数据

  • df.to_csv(filename):导出数据到CSV文件
  • df.to_excel(filename):导出数据到Excel文件
  • df.to_sql(table_name, connection_object):导出数据到SQL表
  • df.to_json(filename):以Json格式导出数据到文本文件

创建测试对象

  • pd.DataFrame(np.random.rand(20,5)):创建20行5列的随机数组成的DataFrame对象
  • pd.Series(my_list):从可迭代对象my_list创建一个Series对象
  • df.index = pd.date_range('1900/1/30', periods=df.shape[0]):增加一个日期索引

查看、检查数据

  • df.head(n):查看DataFrame对象的前n行
  • df.tail(n):查看DataFrame对象的最后n行
  • df.shape():查看行数和列数
  • http://df.info():查看索引、数据类型和内存信息
  • df.describe():查看数值型列的汇总统计
  • s.value_counts(dropna=False):查看Series对象的唯一值和计数
  • df.apply(pd.Series.value_counts):查看DataFrame对象中每一列的唯一值和计数

数据选取

  • df[col]:根据列名,并以Series的形式返回列
  • df[[col1, col2]]:以DataFrame形式返回多列
  • s.iloc[0]:按位置选取数据
  • s.loc['index_one']:按索引选取数据
  • df.iloc[0,:]:返回第一行
  • df.iloc[0,0]:返回第一列的第一个元素

数据清理

  • df.columns = ['a','b','c']:重命名列名
  • pd.isnull():检查DataFrame对象中的空值,并返回一个Boolean数组
  • pd.notnull():检查DataFrame对象中的非空值,并返回一个Boolean数组
  • df.dropna():删除所有包含空值的行
  • df.dropna(axis=1):删除所有包含空值的列
  • df.dropna(axis=1,thresh=n):删除所有小于n个非空值的行
  • df.fillna(x):用x替换DataFrame对象中所有的空值
  • s.astype(float):将Series中的数据类型更改为float类型
  • s.replace(1,'one'):用‘one’代替所有等于1的值
  • s.replace([1,3],['one','three']):用'one'代替1,用'three'代替3
  • df.rename(columns=lambda x: x + 1):批量更改列名
  • df.rename(columns={'old_name': 'new_ name'}):选择性更改列名
  • df.set_index('column_one'):更改索引列
  • df.rename(index=lambda x: x + 1):批量重命名索引

数据处理:Filter、Sort和GroupBy

  • df[df[col] > 0.5]:选择col列的值大于0.5的行
  • df.sort_values(col1):按照列col1排序数据,默认升序排列
  • df.sort_values(col2, ascending=False):按照列col1降序排列数据
  • df.sort_values([col1,col2], ascending=[True,False]):先按列col1升序排列,后按col2降序排列数据
  • df.groupby(col):返回一个按列col进行分组的Groupby对象
  • df.groupby([col1,col2]):返回一个按多列进行分组的Groupby对象
  • df.groupby(col1)[col2]:返回按列col1进行分组后,列col2的均值
  • df.pivot_table(index=col1, values=[col2,col3], aggfunc=max):创建一个按列col1进行分组,并计算col2和col3的最大值的数据透视表
  • df.groupby(col1).agg(np.mean):返回按列col1分组的所有列的均值
  • data.apply(np.mean):对DataFrame中的每一列应用函数np.mean
  • data.apply(np.max,axis=1):对DataFrame中的每一行应用函数np.max

数据合并

  • df1.append(df2):将df2中的行添加到df1的尾部
  • df.concat([df1, df2],axis=1):将df2中的列添加到df1的尾部
  • df1.join(df2,on=col1,how='inner'):对df1的列和df2的列执行SQL形式的join

数据统计

  • df.describe():查看数据值列的汇总统计
  • df.mean():返回所有列的均值
  • df.corr():返回列与列之间的相关系数
  • df.count():返回每一列中的非空值的个数
  • df.max():返回每一列的最大值
  • df.min():返回每一列的最小值
  • df.median():返回每一列的中位数
    • df.std():返回每一列的标准差

Python——Pandas速查手册中文版的更多相关文章

  1. Pandas速查手册中文版

    本文翻译自文章: Pandas Cheat Sheet - Python for Data Science ,同时添加了部分注解. 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非 ...

  2. 三、Pandas速查手册中文版

    本文翻译自文章:Pandas Cheat Sheet - Python for Data Science,同时添加了部分注解. 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重 ...

  3. pandas速查手册(中文版)

    本文翻译自文章:Pandas Cheat Sheet - Python for Data Science 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重要的Python包.它 ...

  4. 【转】Pandas速查手册中文版

    本文翻译自文章:Pandas Cheat Sheet - Python for Data Science,同时添加了部分注解. 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重 ...

  5. Pandas速查手册中文版(转)

    关键缩写和包导入 在这个速查手册中,我们使用如下缩写: df:任意的Pandas DataFrame对象 同时我们需要做如下的引入: import pandas as pd 导入数据 pd.read_ ...

  6. 4、numpy+pandas速查手册

    <Python数据分析常用手册>一.NumPy和Pandas篇 一.常用链接: 1.Python官网:https://www.python.org/2.各种库的whl离线安装包:http: ...

  7. 程序员 & 设计师都能用上的 75 份速查手册

    分享75份开发人员和设计师会用到的速查手册,由 vikas 收集整理,包括:jQuery.HTML.HTML5.CSS.CSS3.JavaScript.Photoshop .git.Linux.Jav ...

  8. 《zw版·Halcon-delphi系列原创教程》 zw版-Halcon常用函数Top100中文速查手册

    <zw版·Halcon-delphi系列原创教程> zw版-Halcon常用函数Top100中文速查手册 Halcon函数库非常庞大,v11版有1900多个算子(函数). 这个Top版,对 ...

  9. 25个有用的和方便的 WordPress 速查手册

    如果你是 WordPress 开发人员,下载一些方便的 WordPress 备忘单可以在你需要的时候快速查找.下面这个列表,我们已经列出了25个有用的和方便的 WordPress 速查手册,赶紧收藏吧 ...

随机推荐

  1. Contour 学习笔记(二):使用级联功能实现蓝绿部署和金丝雀发布

    上篇文章介绍了 Contour 分布式架构的工作原理,顺便简单介绍了下 IngressRoute 的使用方式.本文将探讨 IngressRoute 更高级的用法,其中级联功能是重点. 1. Ingre ...

  2. dmg文件转iso格式

    1. 简介 dmg是MAC苹果机上的压缩镜像文件,相当于在Windows上常见的iso文件. dmg格式在苹果机上可以直接运行加载,在Windows平台上需要先转换为iso格式. 2. 转换工具 本文 ...

  3. codeforces 749D Leaving Auction(二分)

    题目链接:http://codeforces.com/problemset/problem/749/D 题意:就是类似竞拍,然后报价肯定要比上一个高,然后查询输入k个数表示那些人的竞拍无效, 输出最后 ...

  4. codeforces 465 C. No to Palindromes!(暴力+思维)

    题目链接:http://codeforces.com/contest/465/problem/C 题意:给出一个不存在2个或以上回文子串的字符串,全是由小写字母组成而且字母下表小于p,问刚好比这个字符 ...

  5. C++临时变量的回顾思考以及librdkafka设置回调函数注意点

    1 生命周期 如果仅仅是临时变量,并没有调用new来在堆上创建空间,那么注意 : 生命周期仅在该作用域中,即声明该临时变量的{}中: 2 使用(librdkafka C++回调使用) 在创建临时变量后 ...

  6. Java连载28-内存分析

    一.方法在执行过程中是如何分配内存的,内存是如何变化的? 1.方法只定义,不调用,是不会执行的,并且在JVM中也不会给该方法分配”运行所属“的内存空间,只有在调用这个方法的时候,才会动态的给这个方法分 ...

  7. Spring Boot2 系列教程(四)理解Spring Boot 配置文件 application.properties

    在 Spring Boot 中,配置文件有两种不同的格式,一个是 properties ,另一个是 yaml . 虽然 properties 文件比较常见,但是相对于 properties 而言,ya ...

  8. 持续集成高级篇之Jenkins Pipeline 集成sonarqube

    系列目录 前面章节中我们讲到了Sonarqube的使用,其实Sonarqube获取msbuild结果主要是执行三个命令,开始标记,执行msbuild,结束标记,这些都是命令,是非常容易集成到我们ci流 ...

  9. mysql 复制表结构和表数据

    CREATE TABLE a1 ( id INT NOT NULL AUTO_INCREMENT COMMENT '编号', txt VARCHAR(20) NOT NULL DEFAULT '' C ...

  10. Java并发笔记——单例与双重检测

    单例模式可以使得一个类只有一个对象实例,能够减少频繁创建对象的时间和空间开销.单线程模式下一个典型的单例模式代码如下: ① class Singleton{ private static Single ...