Data Compression Category
Data Compression is an approach to compress the origin dataset and save spaces. According to the Economist reports, the amount of digital dat in the world is growing explosively, which increase from 1.2 zettabytes to 1.8 zettabytes in 2010 and 2011. So how to compress data and manage storage cost-effectively is a challenging and important task.
Traditionally, we use compression algorithms to achieve data reduction. The main idea of data compression is "use the fewest number of bits to represent an information as accurately as possible". What we want to do is to represent the origin data information as accurately as possible, so it allows us to ignore some useless information when converting the encoded data to represented data. We can classify the classical compression approach into lossless compression and lossy compression. The difference between them is the loss of unnecessary information.
For lossless compression, it reduces data by identifying and eliminating statistical redundancy in reversible fashion. For removing redundant information. It can use statistical properties to build a new encoding system, like Huffman coding. Or it can use dictionary model, replacing the repeated strings with slide window algorithm. What a matter is that for a lossless compression, when we restore the data, we can get the origin data without losing any information.
For lossy compression, it reduces data by identifying unnecessary information and irretrievably removing it. For the removing unnecessary information, unnecessary information indeed has its own information, which may not be useful in some particular field. So it means lossy compression. In some filed, we just need useful information, and ignore useless information, so lossy compression methods works in Image, Audio, and Video. So we can't get the origin data when we use lossy compression algorithm.
For a lossless approach, when data become larger, eliminating statistical redundancy is unacceptable. Lossless approach needs data statistic information, counting all information. So for a large dataset, it must tradeoff between speed and compression ratio.
There are two methods to compress data, delta compression and data deduplication.
Delta compression is a new perspective to compress two very similar files. It compares two files, A and B, and calculates the delta A-B, so file B can be expressed as file A + delta A-B, which can save space. Delta compression is generally used in source code version, synchronization.
Data deduplication target large-scale system, which has a big granularity (file level or 8K kb size chunk level) the reason why using chunk-level instead of file level in data deduplication is chunk-level can achieve better compression performance. In general, data deduplication splits the back-up data into chunks, and identifies a chunk by its own cryptographically secure hash (SHA-1) signature. For some same chunks, it will remove the duplicate data chunks and store only one copy of that to achieve the goal (saving the space). It will only store the unique chunk, and file metadata, which can be used to reconstruct the origin file.
Data Compression Category的更多相关文章
- SQL SERVER ->> Data Compression
最近做了一个关于数据压缩的项目,要把整个SQL SERVER服务器下所有的表对象要改成页压缩.于是趁此机会了解了一下SQL SERVER下压缩技术. 这篇文章几乎就是完全指导手册了 https://t ...
- Programming Assignment 5: Burrows–Wheeler Data Compression
编程作业五 作业链接:Burrows-Wheeler Data Compression & Checklist 我的代码:MoveToFront.java & CircularSuff ...
- dimensionality reduction动机---data compression(使算法提速)
data compression可以使数据占用更少的空间,并且能使算法提速 什么是dimensionality reduction(维数约简) 例1:比如说我们有一些数据,它有很多很多的feat ...
- Intent中的四个重要属性——Action、Data、Category、Extras
Intent作为联系各Activity之间的纽带,其作用并不仅仅只限于简单的数据传递.通过其自带的属性,其实可以方便的完成很多较为复杂的操作.例如直接调用拨号功能.直接自动调用合适的程序打开不同类型的 ...
- <转>四个重要属性——Action、Data、Category、Extras
Intent作为联系各Activity之间的纽带,其作用并不仅仅只限于简单的数据传递.通过其自带的属性,其实可以方便的完成很多较为复杂的操作.例如直接调用拨号功能.直接自动调用合适的程序打开不同类型的 ...
- Data Compression
数据压缩 introduction 压缩数据可以节省存储数据需要的空间和传输数据需要的时间,虽然摩尔定律说集成芯片上的晶体管每 18-24 个月翻一倍,帕金森定律说数据会自己拓展来填满可用空间,但数据 ...
- Hive 压缩技术Data Compression
Mapreducwe 执行流程 :input > map > shuffle > reduce > output 压缩执行时间,map 之后,压缩,数据存储在本地磁盘,减少磁盘 ...
- 吴恩达机器学习笔记48-降维目标:数据压缩与可视化(Motivation of Dimensionality Reduction : Data Compression & Visualization)
目标一:数据压缩 除了聚类,还有第二种类型的无监督学习问题称为降维.有几个不同的的原因使你可能想要做降维.一是数据压缩,数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,而且它也让我们 ...
- 【转】The most comprehensive Data Science learning plan for 2017
I joined Analytics Vidhya as an intern last summer. I had no clue what was in store for me. I had be ...
随机推荐
- 【集群监控】Docker上部署Prometheus+Alertmanager+Grafana实现集群监控
Docker部署 下载 sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.re ...
- 从零开始搭建WebAPI Core_SqlSugar管理系统(一) 项目环境需求以及项目搭建
从零开始搭建WebAPI Core_SqlSugar管理系统(一) 项目环境需求以及项目搭建 环境需求 想要使用.NET Core,首先你的Visual Studio(以下简称vs)升级到较高的版本, ...
- 《Java语言程序设计》编程练习8.9(游戏:#字游戏)
8.9 (游戏:#字游戏)在并字游戏中,两个玩家使用各自的标志(一方用X则另一方就用O),轮流填写3x3的网格中的某个空格.当一个玩家在网格的水平方向.垂直方向或者对角线方向上出 现了三个相同的X或三 ...
- 斐波那契数列n项的值。(递归和非递归算法Golang实现)
递归实现: func f(num int) int { if num == 1 || num == 2 { return 1 } return f(num-1) + f(num-2) } 非递归实现: ...
- pycharm 激活码 2019/12最新福利(3)
K6IXATEF43-eyJsaWNlbnNlSWQiOiJLNklYQVRFRjQzIiwibGljZW5zZWVOYW1lIjoi5o6I5p2D5Luj55CG5ZWGOiBodHRwOi8va ...
- SDI接口基于FPGA GTP实现
SDI采集和显示,基于xilinx 7系列器件进行实现,注意事项有如下几点: 1,如果多路SDI共用一个GTP Quad,或是SDI和PCIE在一个GTP Quad,时钟资源应该进行共享,既GTP c ...
- vue3.0的安装使用
关于旧版本 Vue CLI 的包名称由 vue-cli 改成了 @vue/cli. 如果你已经全局安装了旧版本的 vue-cli (1.x 或 2.x),你需要先通过 npm uninstall vu ...
- 域渗透-凭据传递攻击(pass the hash)完全总结
总结下PtH具体形式(wmicexec.powershell.msf等) 0x01 PtH攻击原理 && 黄金白银票据 PtH攻击原理 wiki https://en.wikiped ...
- Echart:前端很好的数据图表展现工具+demo
官网: http://echarts.baidu.com/index.html 通过一个简单的小Demo介绍echart的使用:demo均亲测可以运行 demo1: 1.新建一个echarts.ht ...
- php 安装vld扩展
下载地址 : http://pecl.php.net/package/vld 此处包是 : vld-0.14.0.tgz 1. tar -xvf vld-0.14.0.tgz -C INSTAL ...