CodeForces-1217D (拓扑排序/dfs 判环)
题意
https://vjudge.net/problem/CodeForces-1217D
请给一个有向图着色,使得没有一个环只有一个颜色,您需要最小化使用颜色的数量。
思路
因为是有向图,每个环两个颜色就可以满足了。所以最大为2,最小为1。
法1 dfs:
用dfs判断有向图的环,每次把构成环的最后那条边染成2,其余染成1。
法2 拓扑排序:
容易发现,对于一个有向图,如果成环那么点的序号必不是单调的,因为最后的那个点又会连回起始点。
所以我们把u<v染成1,u>v染成2,然后拓扑排序判环,如果有环那么就输出染色方案,否则全输出1。
代码
法1:
#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
#define ll long long
const int N=5e3+5;
const int mod=1e9+7;
const double eps=1e-8;
const double PI = acos(-1.0);
#define lowbit(x) (x&(-x))
vector<int> g[N];
int e[N][N],vis[N],col[N],gg,in[N];
void dfs(int u)
{
int sz=g[u].size();
in[u]=1;
for(int i=0;i<sz;i++)
{
int v=g[u][i];
if(!vis[v])
{
vis[v]=1;
col[e[u][v]]=1;
dfs(v);
}
else if(in[v])
{
col[e[u][v]]=2;
gg=1;
}
else
{
col[e[u][v]]=1;
}
}
in[u]=0;
}
int main()
{
std::ios::sync_with_stdio(false);
int n,m;
while(cin>>n>>m)
{
memset(vis,0,sizeof(vis));
for(int i=1;i<=m;i++)
{
int u,v;
cin>>u>>v;
g[u].push_back(v);
e[u][v]=i;
}
gg=0;
for(int i=1;i<=n;i++)
{
if(!vis[i])
{
// col[i]=1;
vis[i]=1;
dfs(i);
}
}
if(!gg)
{
cout<<1<<endl;
for(int i=1;i<=m;i++)
cout<<1<<" ";
cout<<endl;
}
else
{
cout<<2<<endl;
for(int i=1;i<=m;i++)
cout<<col[i]<<" ";
cout<<endl;
}
}
return 0;
}
法2:
#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
#define ll long long
const int N=200005;
const int mod=1e9+7;
const double eps=1e-8;
const double PI = acos(-1.0);
#define lowbit(x) (x&(-x))
vector<int> g[N];
int col[N],du[N];
int n,m;
bool topo()
{
queue<int> q;
for(int i=1; i<=n; i++)
if(du[i]==0) q.push(i);
int cnt=0;
while(!q.empty())
{
int t=q.front();
for(int i:g[t])
{
du[i]--;
if(du[i]==0)
q.push(i);
}
cnt++;
q.pop();
}
if(cnt!=n)
return false;
return true;
}
int main()
{
std::ios::sync_with_stdio(false);
cin>>n>>m;
for(int i=1; i<=m; i++)
{
int u,v;
cin>>u>>v;
g[u].push_back(v);
col[i]=(u<v);
du[v]++;
}
if(topo())
{
cout<<1<<endl;
for(int i=1;i<=m;i++)
cout<<1<<" ";
cout<<endl;
}
else
{
cout<<2<<endl;
for(int i=1;i<=m;i++)
cout<<col[i]+1<<" ";
cout<<endl;
}
return 0;
}
CodeForces-1217D (拓扑排序/dfs 判环)的更多相关文章
- CodeForces 711D Directed Roads (DFS判环+计数)
题意:给定一个有向图,然后你可能改变某一些边的方向,然后就形成一种新图,让你求最多有多少种无环图. 析:假设这个图中没有环,那么有多少种呢?也就是说每一边都有两种放法,一共有2^x种,x是边数,那么如 ...
- ACM/ICPC 之 拓扑排序+DFS(POJ1128(ZOJ1083)-POJ1270)
两道经典的同类型拓扑排序+DFS问题,第二题较第一题简单,其中的难点在于字典序输出+建立单向无环图,另外理解题意是最难的难点,没有之一... POJ1128(ZOJ1083)-Frame Stacki ...
- cf1278D——树的性质+并查集+线段树/DFS判环
昨天晚上本来想认真打一场的,,结果陪女朋友去了.. 回来之后看了看D,感觉有点思路,结果一直到现在才做出来 首先对所有线段按左端点排序,然后用并查集判所有边是否联通,即遍历每条边i,和前一条不覆盖它的 ...
- Atcoder Grand Contest 032C(欧拉回路,DFS判环)
#include<bits/stdc++.h>using namespace std;int vis[100007];vector<int>v[100007];vector&l ...
- 拓扑排序+DFS(POJ1270)
[日后练手](非解题) 拓扑排序+DFS(POJ1270) #include<stdio.h> #include<iostream> #include<cstdio> ...
- Codeforces Round #292 (Div. 2) D. Drazil and Tiles [拓扑排序 dfs]
传送门 D. Drazil and Tiles time limit per test 2 seconds memory limit per test 256 megabytes Drazil cre ...
- 拓扑排序/DFS HDOJ 4324 Triangle LOVE
题目传送门 题意:判三角恋(三元环).如果A喜欢B,那么B一定不喜欢A,任意两人一定有关系连接 分析:正解应该是拓扑排序判环,如果有环,一定是三元环,证明. DFS:从任意一点开始搜索,搜索过的点标记 ...
- 拓扑排序-DFS
拓扑排序的DFS算法 输入:一个有向图 输出:顶点的拓扑序列 具体流程: (1) 调用DFS算法计算每一个顶点v的遍历完成时间f[v] (2) 当一个顶点完成遍历时,将该顶点放到一个链表的最前面 (3 ...
- cf374C Inna and Dima dfs判环+求最长链
题目大意是有一个DIMA四种字母组成的矩阵,要在矩阵中找最长的DIMADIMADIMA……串,连接方式为四方向连接,问最长能找到多少DIMA.字母可以重复访问,如果DIMA串成环,即可以取出无限长的D ...
随机推荐
- Redis 数据淘汰机制
为了更好的利用内存,使Redis存储的都是缓存的热点数据,Redis设计了相应的内存淘汰机制(也叫做缓存淘汰机制) 通过maxmemory 配置项来设置允许用户使用的最大内存大小,当内存数据集大小达到 ...
- NET Core 3.0 项目中使用 AutoFac
.net core 3.1 今天已正式发布,3.1跟3.0差别不是很大,主要是对 3.0一小部分修复和完善,最重要的是.NET Core 3.1是长期支持(LTS)版本,建议大家升级. .net co ...
- SpringBoot"热"部署解决方案
作者:故事我忘了¢个人微信公众号:程序猿的月光宝盒 SpringBoot热部署两种方式 1.SpringLoader 插件 缺点: Java 代码做部署处理.但是对页面无能为力. 2.DevToo ...
- java 网站源码 在线编辑模版 代码编辑器 兼容手机平板PC freemaker 静态引擎
前台: 支持四套模版, 可以在后台切换 系统介绍: 1.网站后台采用主流的 SSM 框架 jsp JSTL,网站后台采用freemaker静态化模版引擎生成html 2.因为是生成的html,所以 ...
- elasticsearch对无意义的词进行屏蔽——停用词
介绍 在使用elasticsearch进行搜索业务的时候,发现一篇和搜索关键字完全不匹配的文章排在最前面.打开它发现原来是这篇文章含有非常多的"的"这个无意义的词.而我的搜索关键字 ...
- 编译原理之LL(1)文法的判断,递归下降分析程序
1. 文法 G(S): (1)S -> AB (2)A ->Da|ε (3)B -> cC (4)C -> aADC |ε (5)D -> b|ε 验证文法 G(S)是不 ...
- 关于SQL2005备份和还原的语法操作
原数据库:restore database 练习版 from disk='D:\db-recovery\@@@.BAK' WITH REPLACE/WITH NORECOVERY备份数据库:backu ...
- Navicat Premium 连接oracle 提示ORA-01017:用户名/口令无效;登陆被拒绝
Navicat Premium 连接oracle,密码明明是对的,还是提示 ORA-01017:用户名/口令无效:登陆被拒绝.而用Pl/SQL 连接没有问题. 其实用户名和密码是对的,但还是会报错,这 ...
- 单域MPLS 虚拟私有网络的整个详解配置过程(可跟做)
1.PE1和P和PE2之间跑IGP协议 运营商里面首选的还是ISIS协议我们实验的话,用的是OSPF协议 R3的IP地址和OSPF配置 [R3]display ip int brief *down: ...
- right join 和left join 的区别
SQL 数据库 right join 和left join 的区别 left join(左联接) 返回包括左表中的所有记录和右表中联结字段相等的记录 right join(右联接) 返回包括右表中 ...