Pool类

在使用Python进行系统管理时,特别是同时操作多个文件目录或者远程控制多台主机,并行操作可以节约大量的时间。如果操作的对象数目不大时,还可以直接使用Process类动态的生成多个进程,十几个还好,但是如果上百个甚至更多,那手动去限制进程数量就显得特别的繁琐,此时进程池就派上用场了。 
Pool类可以提供指定数量的进程供用户调用,当有新的请求提交到Pool中时,如果池还没有满,就会创建一个新的进程来执行请求。如果池满,请求就会告知先等待,直到池中有进程结束,才会创建新的进程来执行这些请求。
下面介绍一下multiprocessing 模块下的Pool类下的几个方法

apply()

函数原型:

apply(func[, args=()[, kwds={}]])

该函数用于传递不定参数,主进程会被阻塞直到函数执行结束(不建议使用,并且3.x以后不在出现)。

apply_async()

函数原型:

apply_async(func[, args=()[, kwds={}[, callback=None]]])

与apply用法一样,但它是非阻塞且支持结果返回进行回调。

map()

函数原型:

map(func, iterable[, chunksize=None])

Pool类中的map方法,与内置的map函数用法行为基本一致,它会使进程阻塞直到返回结果。 
注意,虽然第二个参数是一个迭代器,但在实际使用中,必须在整个队列都就绪后,程序才会运行子进程。

close()

关闭进程池(pool),使其不在接受新的任务。

terminate()

结束工作进程,不在处理未处理的任务。

join()

主进程阻塞等待子进程的退出,join方法必须在close或terminate之后使用。

multiprocessing.Pool类的实例:

import time
from multiprocessing import Pool
def run(fn):
#fn: 函数参数是数据列表的一个元素
time.sleep(1)
return fn*fn if __name__ == "__main__":
testFL = [1,2,3,4,5,6]
print 'shunxu:' #顺序执行(也就是串行执行,单进程)
s = time.time()
for fn in testFL:
run(fn) e1 = time.time()
print "顺序执行时间:", int(e1 - s) print 'concurrent:' #创建多个进程,并行执行
pool = Pool(5) #创建拥有5个进程数量的进程池
#testFL:要处理的数据列表,run:处理testFL列表中数据的函数
rl =pool.map(run, testFL)
pool.close()#关闭进程池,不再接受新的进程
pool.join()#主进程阻塞等待子进程的退出
e2 = time.time()
print "并行执行时间:", int(e2-e1)
print rl

执行结果:

shunxu:
顺序执行时间: 6
concurrent:
并行执行时间: 2
[1, 4, 9, 16, 25, 36]

上例是一个创建多个进程并发处理与顺序执行处理同一数据,所用时间的差别。从结果可以看出,并发执行的时间明显比顺序执行要快很多,但是进程是要耗资源的,所以平时工作中,进程数也不能开太大。 
程序中的r1表示全部进程执行结束后全局的返回结果集,run函数有返回值,所以一个进程对应一个返回结果,这个结果存在一个列表中,也就是一个结果堆中,实际上是用了队列的原理,等待所有进程都执行完毕,就返回这个列表(列表的顺序不定)。 
对Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close(),让其不再接受新的Process了。

再看一个实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
import time
from multiprocessing import Pool
def run(fn) :
  time.sleep(2)
  print fn
if __name__ == "__main__" :
  startTime = time.time()
  testFL = [1,2,3,4,5]
  pool = Pool(10)#可以同时跑10个进程
  pool.map(run,testFL)
  pool.close()
  pool.join()   
  endTime = time.time()
  print "time :", endTime - startTime

  

执行结果:

21

3
4
5
time : 2.51999998093

再次执行结果如下:

1
34 2
5
time : 2.48600006104

结果中为什么还有空行和没有折行的数据呢?其实这跟进程调度有关,当有多个进程并行执行时,每个进程得到的时间片时间不一样,哪个进程接受哪个请求以及执行完成时间都是不定的,所以会出现输出乱序的情况。那为什么又会有没这行和空行的情况呢?因为有可能在执行第一个进程时,刚要打印换行符时,切换到另一个进程,这样就极有可能两个数字打印到同一行,并且再次切换回第一个进程时会打印一个换行符,所以就会出现空行的情况。

在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,10几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,这时候进程池Pool发挥作用的时候就到了。
      Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来它。这里有一个简单的例子:

  1. #!/usr/bin/env python
  2. #coding=utf-8
  3. """
  4. Author: Squall
  5. Last modified: 2011-10-18 16:50
  6. Filename: pool.py
  7. Description: a simple sample for pool class
  8. """
  9. from multiprocessing import Pool
  10. from time import sleep

  1. def f(x):
  2. for i in range(10):
  3. print '%s --- %s ' % (i, x)
  4. sleep(1)
  5. def main():
  6. pool = Pool(processes=3)    # set the processes max number 3
  7. for i in range(11,20):
  8. result = pool.apply_async(f, (i,))
  9. pool.close()
  10. pool.join()
  11. if result.successful():
  12. print 'successful'
  13. if __name__ == "__main__":
  14. main()

先创建容量为3的进程池,然后将f(i)依次传递给它,运行脚本后利用ps aux | grep pool.py查看进程情况,会发现最多只会有三个进程执行。pool.apply_async()用来向进程池提交目标请求,pool.join()是用来等待进程池中的worker进程执行完毕,防止主进程在worker进程结束前结束。但必pool.join()必须使用在pool.close()或者pool.terminate()之后。其中close()跟terminate()的区别在于close()会等待池中的worker进程执行结束再关闭pool,而terminate()则是直接关闭。result.successful()表示整个调用执行的状态,如果还有worker没有执行完,则会抛出AssertionError异常。
    利用multiprocessing下的Pool可以很方便的同时自动处理几百或者上千个并行操作,脚本的复杂性也大大降低。

转载自:http://www.cnblogs.com/huanxiyun/articles/5826902.html

[转]Python多进程并发操作中进程池Pool的应用的更多相关文章

  1. Python多进程并发操作中进程池Pool的应用

    Pool类 在使用Python进行系统管理时,特别是同时操作多个文件目录或者远程控制多台主机,并行操作可以节约大量的时间.如果操作的对象数目不大时,还可以直接使用Process类动态的生成多个进程,十 ...

  2. Python多进程并发操作进程池Pool

    目录: multiprocessing模块 Pool类 apply apply_async map close terminate join 进程实例 multiprocessing模块 如果你打算编 ...

  3. Python多进程库multiprocessing创建进程以及进程池Pool类的使用

    问题起因最近要将一个文本分割成好几个topic,每个topic设计一个regressor,各regressor是相互独立的,最后汇总所有topic的regressor得到总得预测结果.没错!类似bag ...

  4. Python多进程库multiprocessing中进程池Pool类的使用[转]

    from:http://blog.csdn.net/jinping_shi/article/details/52433867 Python多进程库multiprocessing中进程池Pool类的使用 ...

  5. python学习笔记——multiprocessing 多进程组件 进程池Pool

    1 进程池Pool基本概述 在使用Python进行系统管理时,特别是同时操作多个文件目录或者远程控制多台主机,并行操作可以节约大量时间,如果操作的对象数目不大时,还可以直接适用Process类动态生成 ...

  6. Python 之并发编程之manager与进程池pool

    一.manager 常用的数据类型:dict list 能够实现进程之间的数据共享 进程之间如果同时修改一个数据,会导致数据冲突,因为并发的特征,导致数据更新不同步. def work(dic, lo ...

  7. python 使用进程池Pool进行并发编程

    进程池Pool 当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到mu ...

  8. Python 多进程编程之 进程间的通信(在Pool中Queue)

    Python 多进程编程之 进程间的通信(在Pool中Queue) 1,在进程池中进程间的通信,原理与普通进程之间一样,只是引用的方法不同,python对进程池通信有专用的方法 在Manager()中 ...

  9. python 进程池pool简单使用

    平常会经常用到多进程,可以用进程池pool来进行自动控制进程,下面介绍一下pool的简单使用. 需要主动是,在Windows上要想使用进程模块,就必须把有关进程的代码写if __name__ == ‘ ...

随机推荐

  1. Java后台模拟发送http的get和post请求,并测试

    个人学习使用:谨慎参考 1 Client类 import com.thoughtworks.gauge.Step; import com.thoughtworks.gauge.Table; impor ...

  2. 【深度学习】用PaddlePaddle进行车牌识别(二)

    上节我们讲了第一部分,如何用生成简易的车牌,这节课中我们会用PaddlePaddle来识别生成的车牌. 数据读取 在上一节生成车牌时,我们可以分别生成训练数据和测试数据,方法如下(完整代码在这里): ...

  3. 18.C++-[ ]操作符使用 、函数对象与普通函数区别(详解)

    在上章17.C++-string字符串类(详解)学习了string类,发现可以通过[ ]重载操作符来访问每个字符. 比如: string s="SAD"; for(int i=0, ...

  4. Frequent Value

    Frequent Value poj-3368 题目大意:给你n个数的数列,保证它是单调递增的.给你m个询问,每个询问是询问两个节点之间最长的连续的相等的数的长度. 注释:n,m<=100000 ...

  5. Suricata默认规则集相关

    Suricata规则集 Suricata 基于规则检测和控制数据流量,所有规则的配置文件保存在rules目录内 .这些是已知和确认的活动僵尸网络和其C&C(command and contro ...

  6. ResultSet的getInt()和getString()方法详解

     数据库tt的examstudent数据表如下:   在MySQL中执行查询语句如下: ResultSet rs = null; String sql="SELECT flow_id,Typ ...

  7. Alpha冲刺No.4

    冲刺Day4 一.站立式会议 本来还想今天下午好好弄弄安卓开发,结果计划赶不上变化.(不存在的) 完成备忘录设计,个人界面设计 二.实际项目进展 搞了404(安卓和ssm的连接),好像还是不太行. 备 ...

  8. maven(二)创建工程

    创建动态Web工程打war包 ​ File→new→Maven Project→勾上create a simple project→然后next> ​ 然后会报一下的错 ​ 解决 ​ 创建jav ...

  9. Angular.js 1++快速上手

    AngularJS诞生于2009年,由Misko Hevery 等人创建,后为Goole所收购.是一款优秀的前端JS框架.AngularJS有着诸多特性,最为核心的是:MVC,撗块化,自动化双向数据绑 ...

  10. 常用Mysql数据库操作语句

    用户管理: 1.新建用户: 语法msyql>CREATE USER 'username'@'host' IDENTIFIED BY 'password'; 说明: username - 你将创建 ...