Description

题库链接

有 \(n\) 根木棍,第 \(i\) 根木棍的长度为 \(L_i\) , \(n\) 根木棍依次连结了一起,总共有 \(n-1\) 个连接处。现在允许你最多砍断 \(m\) 个连接处,砍完后 \(n\) 根木棍被分成了很多段,要求满足总长度最大的一段长度最小,并且输出有多少种砍的方法使得总长度最大的一段长度最小。对质数取模。

\(1\leq n\leq 50000,1\leq m\leq \min\{n-1,1000\}\)

Solution

第一问二分,不再赘述。

第二问考虑 \(DP\) 。令 \(f_{i,j}\) 为前 \(i\) 条木棍,划分为 \(j\) 段的方案数。转移我们考虑最后一段怎么分。我们可以预处理出一个数组 \(pre_i\) 表示最后一段最长能分到哪里,显然 \[f_{i,j}=\sum_{k=pre_i}^{i-1}f_{k,j-1}\]

显然这样复杂度是假的。我们可以用前缀和优化,并且珂以记 \(f_{i}\) 为当前枚举到分为 \(j\) 段时,第 \(i\) 条木棍前的方案数。这样直接省去一维。

空间复杂度 \(O(n)\) ;时间复杂度 \(O(nm)\) 。

Code

//It is made by Awson on 2018.3.3
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 50000, INF = 5e8, yzh = 10007;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(int x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(int x) {if (x < 0) putchar('-'); print(Abs(x)); } int n, m, a[N+5], len, lef[N+5], f[N+5], s[N+5]; bool judge(int x) {
int cnt = 1, ret = 0;
for (int i = 1; i <= n; i++) {
if (a[i] > x) return false;
if (ret+a[i] > x) ret = a[i], ++cnt; else ret += a[i];
}
return cnt <= m;
}
void solve1() {
int l = 1, r = INF, ans;
while (l <= r) {
int mid = (l+r)>>1; if (judge(mid)) ans = mid, r = mid-1; else l = mid+1;
}
write(len = ans), putchar(' ');
}
void solve2() {
int now = 0, ans = 0;
for (int i = 1; i <= n; i++) {
a[i] += a[i-1];
while (a[i]-a[now] > len) ++now;
lef[i] = now;
}
for (int i = 0; i <= n; i++) s[i] = 1;
for (int len = 1; len <= m; len++) {
for (int i = 1; i <= n; i++) f[i] = (lef[i] == 0 ? s[i-1] : s[i-1]-s[lef[i]-1]);
s[0] = 0; for (int i = 1; i <= n; i++) s[i] = (f[i]+s[i-1])%yzh;
ans = (ans+f[n])%yzh;
}
write((ans+yzh)%yzh);
}
void work() {
read(n), read(m); ++m; for (int i = 1; i <= n; i++) read(a[i]);
solve1(); solve2();
}
int main() {
work(); return 0;
}

[HAOI 2008]木棍分割的更多相关文章

  1. BZOJ 1044 木棍分割 解题报告(二分+DP)

    来到机房刷了一道水(bian’tai)题.题目思想非常简单易懂(我的做法实际上参考了Evensgn 范学长,在此多谢范学长了) 题目摆上: 1044: [HAOI2008]木棍分割 Time Limi ...

  2. 【BZOJ】【1044】【HAOI2008】木棍分割

    二分/DP 真是一道好题! 第一问很简单的二分…… 第二问一开始我想成贪心了,其实应该是DP的= = 然后没有注意……又MLE又TLE的……这题要对DP进行时空两方面的优化!! 题解:(by JoeF ...

  3. BZOJ1044: [HAOI2008]木棍分割

    1044: [HAOI2008]木棍分割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1580  Solved: 567[Submit][Statu ...

  4. 【czy系列赛】czy的后宫6 && bzoj1044 [HAOI2008]木棍分割

    题目描述 众所周知的是丧尸czy有很多妹子(虽然很多但是质量不容乐观QAQ),今天czy把n个妹子排成一行来检阅.但是czy的妹子的质量实在--所以czy看不下去了.检阅了第i个妹子会增加czy a[ ...

  5. BZOJ 1044: [HAOI2008]木棍分割(二分答案 + dp)

    第一问可以二分答案,然后贪心来判断. 第二问dp, dp[i][j] = sigma(dp[k][j - 1]) (1 <= k <i, sum[i] - sum[k] <= ans ...

  6. 木棍分割[HAOI2008]

    题目描述 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长度最小, 并且 ...

  7. bzoj1044[HAOI2008]木棍分割 单调队列优化dp

    1044: [HAOI2008]木棍分割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4314  Solved: 1664[Submit][Stat ...

  8. 【BZOJ1044】[HAOI2008]木棍分割(动态规划,贪心)

    [BZOJ1044][HAOI2008]木棍分割(动态规划,贪心) 题面 BZOJ 洛谷 题解 第一问随便二分一下就好了,贪心\(check\)正确性显然. 第二问随便前缀和+单调队列优化一下\(dp ...

  9. 【BZOJ1044】[HAOI2008]木棍分割

    [BZOJ1044][HAOI2008]木棍分割 题面 bzoj 洛谷 题解 第一问显然可以二分出来的. 第二问: 设\(dp[i][j]\)表示前\(i\)个,切了\(j\)组的方案数 发现每次转移 ...

随机推荐

  1. Beta冲刺 第三天

    Beta冲刺 第三天 1. 昨天的困难 昨天的困难主要集中在对Ajax的使用上,不熟悉这种语法,所以也就浪费了时间,导致昨天的批量删除没有完全完成. 2. 今天解决的进度 潘伟靖: 1.完善了昨天没写 ...

  2. tornado options

    tornado.options.define() 用来定义options选项变量的方法,定义的变量可以在全局的tornado.options.options中获取使用,传入参数: name 选项变量名 ...

  3. 20145237 《Java程序设计》第七周学习总结

    20145237 <Java程序设计>第七周学习总结 教材学习内容总结 第十三章   一.认识时间与日期   1.时间的度量   在正式认识Java提供了哪些时间处理API之前,得先来了解 ...

  4. 09-移动端开发教程-Sass入门

    1. 引言 CSS3之前的CSS都大都是枚举属性样式,而编程语言强大的变量.函数.循环.分支等功能基本都不能在CSS中使用,让CSS的编程黯淡无光,Sass就是一种增强CSS编程的扩展语言(CSS4也 ...

  5. 更优雅的方式: JavaScript 中顺序执行异步函数

    火于异步 1995年,当时最流行的浏览器--网景中开始运行 JavaScript (最初称为 LiveScript). 1996年,微软发布了 JScript 兼容 JavaScript.随着网景.微 ...

  6. 07_Python的控制判断循环语句1(if判断,for循环...)_Python编程之路

    Python的数据类型在前几节我们都简单的一一介绍了,接下来我们就要讲到Python的控制判断循环语句 在现实编程中,我们往往要利用计算机帮我们做大量重复计算的工作,在这样的情况下,需要机器能对某个条 ...

  7. C 函数指针与回调函数

    函数指针是指向函数的指针变量. 通常我们说的指针变量是指向一个整型.字符型或数组等变量,而函数指针是指向函数. 函数指针可以像一般函数一样,用于调用函数.传递参数. 函数指针变量的声明: #inclu ...

  8. Mybatis入门程序

    作为一个java的学习者,我相信JDBC是大家最早接触也是入门级别的数据库连接方式,所以我们先来回忆一下JDBC作为一种用于执行SQL语句的Java API是如何工作的.下面的一段代码就是最基本的JD ...

  9. python之celery的使用(一)

    前段时间需要使用rabbitmq做写缓存,一直使用pika+rabbitmq的组合,pika这个模块虽然可以很直观地操作rabbitmq,但是官方给的例子太简单,对其底层原理了解又不是很深,遇到很多坑 ...

  10. HTTP协议扫盲(二)HTTP协议的请求方法、请求头和响应头

    一.HTTP请求方法 Http协议定义了很多与服务器交互的方法,最基本的有4种,分别是GET,POST,PUT,DELETE. 一个URL地址用于描述一个网络上的资源,而HTTP中的GET, POST ...