Description

给定n,m,p(1≤n,m,p≤10​^5​​)

求 C_{n+m}^{m} \mod p

保证P为prime

C表示组合数。

一个测试点内包含多组数据。

Input

第一行一个整数T(T≤10),表示数据组数

第二行开始共T行,每行三个数n m p,意义如上

Output

共T行,每行一个整数表示答案。

Sample Input

2
1 2 5
2 1 5

Sample Output

3
3

题解

$Lucas$定理。

就是$C^m _n \mod p = C^{m/p} _{n/p}*C^{m \mod p} _{n \mod p} \mod p$。

证明:不会。记着就行。

代码实现方面,注意两点:

1.对于$C^{m/p} _{n/p}$部分可以继续使用$Lucas$定理递归求解。

2.求逆元,可以用费马小定理做快速幂,当然也可以线性预处理阶乘逆元。注意,若线性预处理,需要将$0$位赋为$1$(很好理解,不做解释)。

 //It is made by Awson on 2017.10.7
#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
using namespace std;
const int N = 1e5; int n, m, p;
int A[N+], B[N+]; int C(int n, int m, int p) {
if (m > n) return ;
return (LL)A[n]*B[n-m]%p*B[m]%p;
}
int Lucas(int n, int m, int p) {
if (!m) return ;
return (LL)C(n%p, m%p, p)*Lucas(n/p, m/p, p)%p;
}
void work() {
scanf("%d%d%d", &n, &m, &p);
A[] = B[] = A[] = B[] = ;
n += m;
for (int i = ; i <= p; i++)
B[i] = -(LL)(p/i)*B[p%i]%p;
for (int i = ; i <= p; i++)
A[i] = (LL)A[i-]*i%p,
B[i] = (LL)B[i-]*B[i]%p;
printf("%d\n", (Lucas(n, m, p)+p)%p);
}
int main() {
int t;
scanf("%d", &t);
while (t--)
work();
return ;
}

[Luogu 3807]【模板】卢卡斯定理的更多相关文章

  1. 洛谷.3807.[模板]卢卡斯定理(Lucas)

    题目链接 Lucas定理 日常水题...sublime和C++字体死活不同步怎么办... //想错int范围了...不要被longlong坑 //这个范围现算阶乘比预处理快得多 #include &l ...

  2. 【洛谷P3807】(模板)卢卡斯定理

    卢卡斯定理 把n写成p进制a[n]a[n-1][n-2]…a[0],把m写成p进制b[n]b[n-1][n-2]…b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])* ...

  3. 887. 求组合数 III(模板 卢卡斯定理)

    a,b都非常大,但是p较小 前边两种方法都会超时的  N^2 和NlongN  可以用卢卡斯定理  P*longN*longP     定义: 代码: import java.util.Scanner ...

  4. 【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)

    [模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\), ...

  5. 【数论】卢卡斯定理模板 洛谷P3807

    [数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...

  6. 【Luogu3807】【模板】卢卡斯定理(数论)

    题目描述 给定\(n,m,p(1≤n,m,p≤10^5)\) 求 \(C_{n+m}^m mod p\) 保证\(P\)为\(prime\) \(C\)表示组合数. 一个测试点内包含多组数据. 输入输 ...

  7. P3807 【模板】卢卡斯定理

    P3807 [模板]卢卡斯定理 求 \(C_{m + n}^{m} \% p\) ( \(1\le n,m,p\le 10^5\) ) 错误日志: 数组开小(哇啊啊啊洼地hi阿偶我姑父阿贺佛奥UFO爱 ...

  8. 【刷题】洛谷 P3807 【模板】卢卡斯定理

    题目背景 这是一道模板题. 题目描述 给定\(n,m,p( 1\le n,m,p\le 10^5)\) 求 \(C_{n+m}^{m}\ mod\ p\) 保证 \(p\) 为prime \(C\) ...

  9. 洛谷 P3807 【模板】卢卡斯定理

    P3807 [模板]卢卡斯定理 题目背景 这是一道模板题. 题目描述 给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105) 求 C_{n+m}^{m}\ mod\ pCn+mm ...

  10. 洛谷——P3807 【模板】卢卡斯定理

    P3807 [模板]卢卡斯定理 洛谷智推模板题,qwq,还是太弱啦,组合数基础模板题还没做过... 给定n,m,p($1\le n,m,p\le 10^5$) 求 $C_{n+m}^{m}\ mod\ ...

随机推荐

  1. Beta Scrum Day 3

    听说

  2. 201621123060《JAVA程序设计》第十三周学习总结

    1. 本周学习总结 以你喜欢的方式(思维导图.OneNote或其他)归纳总结多网络相关内容. 2. 为你的系统增加网络功能(购物车.图书馆管理.斗地主等)-分组完成 为了让你的系统可以被多个用户通过网 ...

  3. 一起happy--C++小组Alpha版本发布说明

    1 功能介绍 该PC端APP,是一个同行者的信息搜索平台,旨在为喜欢游玩,但是身边同学朋友时间冲突,想找人结伴的年轻人提供一个检索平台,让他们尽量能够快速便捷的寻找合适同行者.该APP有登录.注册.主 ...

  4. Bate测试报告

    1 测试中找出的bug Bug类型 总数 描述 修复的bug 10 1.注册成功并没有直接跳转到登录页面: 2.学校地区无限制,数字也可以: 3.虽然相同用户名不能注册,但是只是显示,注册失败,却没有 ...

  5. python-装饰器简述

    装饰器是什么 用来修饰别的函数的函数就可以称之为装饰器 这种函数的参数一般就是另外一个函数 也就是说,调用这种函数,需要给这种函数传参,且参数是函数 @语法糖 @语法糖一般用来表示装饰器函数 不用@也 ...

  6. C++ 实现一个信号量

    C++ 实现一个信号量 信号量有很多应用场景,事实上只要是生产者-消费者模型,一般都需要一个信号量来控制. POSIX接口是有PV信号量API的.但C++标准没有.下面是一个PV信号量的简单实现.有些 ...

  7. wpf研究之道——datagrid控件分页

    这是我们的datagrid分页效果图,有上一页,下一页,可以跳到任何一页.当页码比较多的时候,只显示几页,其余用点点,界面实现如下: <!--分页--> <StackPanel Or ...

  8. tomcat-theory

    (一) java类:applet,servlet,jsp JSP:.jsp-->.java-->(JVM).classJDK:javac,.java-->.classweb:Serv ...

  9. 你考虑清楚了吗就决定用 Bootstrap ?

    近年来,在前端项目中, Bootstrap 已经成为了一个非常受欢迎的工具. Bootstrap 的确有很多优点,然而,如果你的团队中恰好有一个专职的前端工程师.那我推荐你们不要使用 Bootstra ...

  10. GIT入门笔记(5)- 创建版本库

    版本库又名仓库,英文名repository,可以简单理解成一个目录, 这个目录里面的所有文件都可以被Git管理起来,每个文件的修改.删除,Git都能跟踪,以便任何时刻都可以追踪历史,或者在将来某个时刻 ...