本文由百度技术团队“蔡锐”原创发表于“百度App技术”公众号,原题为《百度App网络深度优化系列《一》DNS优化》,感谢原作者的无私分享。

一、前言

网络优化是客户端几大技术方向中公认的一个深度领域,所以百度App给大家带来网络深度优化系列文章。

本系列文章目录如下:

希望对大家在网络方向的学习和实践有所帮助。

百度起家于搜索,整个公司的网络架构和部署都是基于标准的internet协议,目前已经是全栈HTTPS,来到移动互联网时代后,总的基础架构不变,但在客户端上需要做很多优化工作。

DNS(Domain Name System),它的作用是根据域名查出IP地址,它是HTTP协议的前提,只有将域名正确的解析成IP地址后,后面的HTTP流程才能进行,所以一般做网络优化会首选优化DNS。

(本文同步发布于:http://www.52im.net/thread-2472-1-1.html

二、相关文章

TCP/IP详解 卷1:协议 - 第14章 DNS:域名系统
全面了解移动端DNS域名劫持等杂症:技术原理、问题根源、解决方案等
美图App的移动端DNS优化实践:HTTPS请求耗时减小近半
现代移动端网络短连接的优化手段总结:请求速度、弱网适应、安全保障
移动端IM开发者必读(一):通俗易懂,理解移动网络的“弱”和“慢”
移动端IM开发者必读(二):史上最全移动弱网络优化方法总结

三、技术背景

DNS优化核心需要解决的问题有两点:

1)由于DNS劫持或故障造成的服务不可用,进而影响用户体验,影响公司的收入;

2)由于DNS调度不准确导致的性能退化,进而影响用户体验。

百度App承载着亿级流量,每年都会遇到运营商DNS劫持或运营商DNS故障,整体影响非常不好,所以DNS优化刻不容缓,通过下图会更直观的了解运营商劫持或故障的原理。

 

▲ 运营商劫持或故障的原理

有关移动端DNS劫持等各种疑难杂症,详见文章《全面了解移动端DNS域名劫持等杂症:技术原理、问题根源、解决方案等》。

四、HTTPDNS

4.1 概述

既然我们面临这么严峻的问题,那么我们如何优化DNS呢?答案就是HTTPDNS。

大部分标准DNS都是基于UDP与DNS服务器交互的,HTTPDNS则是利用HTTP协议与DNS服务器交互,绕开了运营商的Local DNS服务,有效防止了域名劫持,提高域名解析效率,下图是HTTPDNS的原理。

 

▲ HTTPDNS原理

百度App HTTPDNS端上的实现是基于百度SYS团队的HTTPDNS服务,下图介绍了HTTPDNS的服务端部署结构。

 

▲ HTTPDNS部署结构

HTTPDNS服务是基于BGP接入的,BGP英文Border Gateway Protocol,即边界网关协议,是一种在自治系统之间动态的交换路由信息的路由协议,BGP可以根据当前用户的运营商路由到百度服务点的对应集群上,对于第三方域名,服务点会通过百度部署在运营商的CDN节点向其他域名权威DNS发起查询,查询这个运营商下域名的最优IP。

百度App独立实现了端的HTTPDNS SDK,下图介绍了端HTTPDNS的整体架构。

 

▲ 端HTTPDNS的整体架构

更多HTTPDNS的资料,请见:《全面了解移动端DNS域名劫持等杂症:技术原理、问题根源、解决方案等》、《美图App的移动端DNS优化实践:HTTPS请求耗时减小近半》。

4.2 DNS接口层

DNS接口层解决的问题是屏蔽底层的细节,对外提供简单整洁的API,降低使用者的上手成本,提高开发效率。

4.3 DNS策略层

DNS策略层通过多种策略的组合,使HTTPDNS服务在性能,稳定性,可用性上均保持较高的水准,下面讲解下每个策略设计的初衷和具体实现。

【4.3.1 容灾策略】:

这是一个非常关键的策略,主要解决HTTPDNS服务可用性的问题,实践证明,这个策略帮助百度App在异常情况下挽救回很多流量。

(1)当HTTPDNS服务不可用并且本地也没有缓存或者缓存失效的时候,会触发降级策略,降级成运营商的localDNS方案,虽然存在运营商事故或者劫持的风险,但保障了DNS服务的可用性。

(2)当HTTPDNS服务和localDNS服务双双不可用的情况下,会触发backup策略,使用端上的backup IP。

什么是backup IP?backup IP是多组根据域名分类的IP列表,可云端动态更新,方便后续运维同学调整服务端的节点IP,不是所有域名都有对应的backup IP列表,目前百度App只能保证核心域名的可用性。

既然是一组IP,便有选取问题,backup IP选取机制是怎样的呢?我们的中心思想就是要在端上利用最小的代价,并且考虑服务端的负载均衡,得到相对正确或者合理的选取结果。通过运营商和地理信息,可以选择一个相对较优的IP,但获取地理信息需要很大耗时,外加频次很高,代价很大,所以我们选择了RR算法来代替上面的方法(RR算法是Round-Robin,轮询调度),这样客户端的代价降低到最小,服务端也实现了负载均衡。

【4.3.2 安全策略】:

(1)HTTPDNS解决的核心问题就是安全,标准的DNS查询大部分是基于UDP的,但也有基于TCP的,如果UDP被封禁,就需要使用TCP。不管是UDP还是TCP,安全性都是没有保障的,HTTPDNS查询是基于标准的HTTP协议,为了保证安全我们会在HTTP上加一层TLS(安全传输层协议),这便是HTTPS;

(2)解决了传输层协议的安全性后,我们要解决下域名解析的问题,上面我们提到HTTPDNS服务是基于BGP接入的,在端上采用VIP方式请求HTTPDNS数据(VIP即Virtual IP,VIP并没有与某设备存在必定的绑定关系,会跟随主备切换之类的情况发生而变换,VIP提供的服务是对应到某一台或若干台服务器的),既然请求原始数据需要使用IP直连的方式,那么就摆脱了运营商localDNS的解析限制,这样即使运营商出现了故障或者被劫持,都不会影响百度App的可用性。

【4.3.3 任务调度策略】:

HTTPDNS服务提供了两类HTTP接口,用于请求最优域名结果。第一种是多域名接口,针对不同的产品线,下发产品线配置的域名,第二种是单域名接口,只返回你要查询的那个域名结果,这样的设计和标准的DNS查询基本是一样的,只不过是从UDP协议变成了HTTP协议。

(1)多域名接口会在App冷启动和网络切换的时候请求一次,目的是在App的网络环境初始化或者变化的时候预先获取域名结果,这样也会减少单域名接口的请求次数。

(2)单域名接口会在本地cache过期后,由用户的操作触发网络请求,进而做一次单域名请求,用户这次操作的DNS结果会降级成localDNS的结果,但在没有过期的情况下,下次会返回HTTPDNS的结果。

【4.3.4 IP选取策略】:

IP选取策略解决的核心问题是最优IP的选取,避免因为接入点的选取错误造成的跨运营商耗时。HTTPDNS服务会将最优IP按照顺序下发,客户端默认选取第一个,这里没有做客户端的连通性校验的原因,主要还是担心端上的性能问题,不过有容灾策略兜底,综合评估还是可以接受的。

【4.3.5 缓存策略】:

大家对于DNS缓存并不陌生,它主要是为了提升访问效率,操作系统,网络库等都会做DNS缓存。

DNS缓存中一个重要的概念就是TTL(Time-To-Live),在localDNS中针对不同的域名,TTL的时间是不一样的,在HTTPDNS中这个值由服务端动态下发,百度App目前所有的域名TTL的配置是5分钟,过期后如果没有新的IP将继续沿用老的IP,当然也可以选择不沿用老的IP,而降级成localDNS的IP,那么这就取决于localDNS对于过期IP的处理。

【4.3.6 命中率策略】:

如果HTTPDNS的命中率是100%,在保证HTTPDNS服务稳定高效的前提下,我们就可以做到防劫持,提升精准调度的能力。

(1)为了提升HTTPDNS的命中率,我们选择使用多域名接口,在冷启动和网络切换的时候,批量拉取域名结果并缓存在本地,便于接下来的请求使用。

(2)为了再一次提升HTTPDNS的命中率,当用户操作触发网络请求,获取域名对应的IP时,会提前进行本地过期时间判断,时间是60s,如果过期,会发起单域名的请求并缓存起来,这样会持续延长域名结果的过期时间。本地过期时间与上面提到的TTL是客户端和服务端的双重过期时间,目的是在异常情况下可以双重保证过期时间的准确性。

4.4 基础能力层

基础能力层主要提供给DNS策略层所需要的基础能力,包括IPv4/IPv6协议栈探测的能力,数据传输的能力,缓存实现的能力,下面将讲解每种能力的具体实现。

【4.4.1 IPv4/IPv6协议栈探测】:

百度App的IPv6改造正在如火如荼的进行中,端上在HTTPDNS的IP选取上如何知道目前属于哪个协议栈成为关键性问题,并且这种判断要求性能极高,因为IP选取的频次实在是太高了。

我们选取的方案是UDP Connect,那么何为UDP Connect?

大家都知道TCP是面向连接的,传输数据前客户端都要调用connect方法通过三次握手建立连接,UDP是面向无连接的,无需建立连接便能收发数据,但是如果我们调用了UDP的connect方法会发生什么呢?当我们调用UDP的connect方法时,系统会检测其端口是否可用,地址是否正确,然后记录对端的IP地址和端口号,返回给调用者,所以UDP Connect不会像TCP Connect发起三次握手,发生网络真实损耗,UDP客户端只有调用send或者sendto方法后才会真正发起真实网络损耗。

 

▲ UDP Connect原理

有了UDP Connect的基础保障,我们在上层做了缓存机制,用来减少系统调用的损耗,时机上目前仅在冷启动和网络切换会触发探测,在同一种网络制式下探测一次基本可以确保当前网络是IPv4栈还是IPv6栈。

目前百度App客户端对于IPv4/IPv6双栈的策略是保守的,仅在IPv6-only的情况下使用v6的IP,其余使用的都是v4的IP,双栈下的方案后续需要优化,业内目前标准的做法是happy eyeball算法。

什么叫happy eyeball呢?

就是不会因为IPv4或IPv6的故障问题,导致用户的眼球一直在等待加载或者出错,这就是happy eyeball名字的由来。happy eyeball有v1版本RFC6555和v2版本RFC8305,前者是Cisco提出来的,后者是苹果提出来的。happy eyeball解决的核心问题是,复杂环境下v4和v6 IP选取的问题,它是一套整体解决方案,对于域名查询的处理,地址的排序,连接的尝试等方面均做出了规定,感兴趣的同学可以查看参考资料里的【5】和【6】。

【4.4.2 数据传输】:

数据传输主要提供网络请求的能力和数据解析的能力。

(1)网络请求失败重试的机制,获取HTTPDNS结果的成功率会大大影响HTTPDNS的命中率,所以客户端会有一个三次重试的机制,保障成功率。

(2)数据解析异常的机制,如果获取的HTTPDNS的结果存在异常,将不会覆盖端上的缓存。

【4.4.3 缓存实现】:

缓存的实现基本可以分为磁盘缓存和内存缓存,对于HTTPDNS的缓存场景,我们是选其一还是都选择呢?

百度App选择的是内存缓存,目的是防止我们自己的服务出现问题,运维同学在紧急情况下切换流量,如果做了磁盘缓存,会导致百度App在重启后也可能不可用,但这种问题会导致APP在冷启动期间,HTTPDNS结果未返回前,还是存在故障或者劫持的风险,综合评估来看可以接受,如果出现这种极端情况,影响的是冷启动阶段的一些请求,但只要HTTPDNS结果返回后便会恢复正常。

五、HTTPDNS的最佳实践

百度App目前客户端网络架构由于历史原因还未统一,不过我们正朝着这个目标努力,下面着重介绍下HTTPDNS在Android和iOS网络架构中的位置及实践。

HTTPDNS在Android网络架构的位置及实践:

百度App的Android网络流量都在okhttp之上,上层进行了网络门面的封装,封装内部的实现细节和对外友好的API,供各个业务和基础模块使用,在okhttp上我们扩展了DNS模块,使用HTTPDNS替换了原有的系统DNS。

 

▲ HTTPDNS在Android网络架构的位置

HTTPDNS在iOS网络架构的位置及实践:

百度App的iOS网络流量都在cronet(chromium的net模块)之上,上层我们使用AOP的方式将cronet stack注入进URLSession里,这样我们就可以直接使用URLSession的API进行网络的操作而且更易于系统维护。

在上层封装了网络门面,供各个业务和基础模块使用,在cronet内部我们修改了DNS模块,除了原有的系统DNS逻辑外,还添加了HTTPDNS的逻辑。

iOS上还有一部分流量是在原生URLSession上,主要是有些第三方业务没有使用cronet但还想单独使用HTTPDNS的能力,所以就有了下面的HTTPDNS封装层,方法是在上层直接将域名替换成IP,域名对于底层很多机制是至关重要的,比如https校验,cookie,重定向,SNI(Server Name Indication)等,所以将域名修改成了IP直连后,我们又处理了以上三种情况,保证请求的可用性。

 

▲ HTTPDNS在iOS网络架构的位置

六、实际收益

DNS优化的收益主要有两点:

1)防止DNS的劫持(在出问题时显得尤为重要);

2)降低网络时延(在调度不准确的情况下,会增大网络的时延,降低用户的体验)。

这两点收益需要结合业务来说,以百度App Feed业务为例:

1)第一点上我们取得了比较大的效果,iOS劫持率由0.12%降低到0.0002%,Android劫持率由0.25%降低到0.05%;

2)第二点的收益不明显,原因在于Feed业务主要目标群体在国内,百度在国内节点布局相对丰富,服务整体质量也较高,即使出现调度不准确的情况,差值也不会太大,但如果在国外情况可能会差很多。

七、本文结语

DNS优化是个持续性的话题,上面介绍的百度App的一些经验和做法并不见得完美,但我们会持续深入的优化下去,为百度App的DNS能力保驾护航。最后感谢大家的辛苦阅读,希望对你有所帮助,后面会继续推出《百度APP移动端网络深度优化实践分享(二):网络连接优化篇》,敬请期待。

八、个人心得

做为一个工程师,如何才能做好网络优化这件事情,是个值得我们交流探讨的话题,个人认为应该从以下五方面入手。

1)基础知识要了解学习,要夯实:网络相关的内容很多,很杂,不易学习,啃过IETF发布的RFC的同学应该深有感触。

2)学会将看不见的网络变成看得见的:很多自认为对于网络很了解的同学,动不动就背诵tcp协议原理,拥塞控制算法,滑动窗口大小等,但真正遇到线上问题,无从下手。对于客户端同学,我们在PC上要学会使用tcpdump和Wireshark等工具,适当使用Fiddler和Charles等工具,很多时候电脑和手机的网络环境不见得一致,所以要在手机上使用iNetTools,Ping&DNS或终端工具。学会使用工具后,要学着创造不同的网络环境,有很多工具能帮助你完成这点,比如苹果的Network Link Conditioner,FaceBook的ATC(Augmented Traffic Control)等。具备以上两个场景后,你的第一条储备就发挥了作用,你要能看懂握手过程,传输过程,异常断开过程等。

3)有了以上两点的准备,接下来需要一个会出现各种网络问题的平台,给你积累经验,让一个个高压下的线上问题锤炼你,折磨你。

4)网络优化是需要数据支撑的:但数据的采集和分析是需要经验的,有些数据一眼看下去就是不靠谱的,有些数据怎么分析都是负向收益的,一般来说是有三重奏来对数据进行分析的,一,线下数据的采集和分析,得出正向收益,二,灰度数据的采集和分析,得出正向收益,三,线上数据的采集和分析,得出正向收益。

5)数据的正向收益,不能完全证明提升了用户的体验,所以很多时候需要针对特定场景,特定case来分析和优化,就算是大家公认做的很好的微信,也不是在所有场景下都能保证体验上的最佳。

九、参考资料

[1] https://chromium.googlesource.com/chromium/src/+/HEAD/docs/android_build_instructions.md

[2] https://chromium.googlesource.com/chromium/src/+/HEAD/docs/ios/build_instructions.md

[3] https://github.com/Tencent/mars

[4] https://tools.ietf.org/html/rfc7858

[5] https://tools.ietf.org/html/rfc6555

[6] https://tools.ietf.org/html/rfc8305

(原文链接:点此进入

附录:更多网络通信方面的精华文章

TCP/IP详解 - 第11章·UDP:用户数据报协议
TCP/IP详解 - 第17章·TCP:传输控制协议
TCP/IP详解 - 第18章·TCP连接的建立与终止
TCP/IP详解 - 第21章·TCP的超时与重传
技术往事:改变世界的TCP/IP协议(珍贵多图、手机慎点)
通俗易懂-深入理解TCP协议(上):理论基础
通俗易懂-深入理解TCP协议(下):RTT、滑动窗口、拥塞处理
理论经典:TCP协议的3次握手与4次挥手过程详解
理论联系实际:Wireshark抓包分析TCP 3次握手、4次挥手过程
计算机网络通讯协议关系图(中文珍藏版)
UDP中一个包的大小最大能多大?
P2P技术详解(一):NAT详解——详细原理、P2P简介
P2P技术详解(二):P2P中的NAT穿越(打洞)方案详解
P2P技术详解(三):P2P技术之STUN、TURN、ICE详解
通俗易懂:快速理解P2P技术中的NAT穿透原理
高性能网络编程(一):单台服务器并发TCP连接数到底可以有多少
高性能网络编程(二):上一个10年,著名的C10K并发连接问题
高性能网络编程(三):下一个10年,是时候考虑C10M并发问题了
高性能网络编程(四):从C10K到C10M高性能网络应用的理论探索
高性能网络编程(五):一文读懂高性能网络编程中的I/O模型
高性能网络编程(六):一文读懂高性能网络编程中的线程模型
不为人知的网络编程(一):浅析TCP协议中的疑难杂症(上篇)
不为人知的网络编程(二):浅析TCP协议中的疑难杂症(下篇)
不为人知的网络编程(三):关闭TCP连接时为什么会TIME_WAIT、CLOSE_WAIT
不为人知的网络编程(四):深入研究分析TCP的异常关闭
不为人知的网络编程(五):UDP的连接性和负载均衡
不为人知的网络编程(六):深入地理解UDP协议并用好它
不为人知的网络编程(七):如何让不可靠的UDP变的可靠?
不为人知的网络编程(八):从数据传输层深度解密HTTP
网络编程懒人入门(一):快速理解网络通信协议(上篇)
网络编程懒人入门(二):快速理解网络通信协议(下篇)
网络编程懒人入门(三):快速理解TCP协议一篇就够
网络编程懒人入门(四):快速理解TCP和UDP的差异
网络编程懒人入门(五):快速理解为什么说UDP有时比TCP更有优势
网络编程懒人入门(六):史上最通俗的集线器、交换机、路由器功能原理入门
网络编程懒人入门(七):深入浅出,全面理解HTTP协议
网络编程懒人入门(八):手把手教你写基于TCP的Socket长连接
网络编程懒人入门(九):通俗讲解,有了IP地址,为何还要用MAC地址?
技术扫盲:新一代基于UDP的低延时网络传输层协议——QUIC详解
让互联网更快:新一代QUIC协议在腾讯的技术实践分享
现代移动端网络短连接的优化手段总结:请求速度、弱网适应、安全保障
聊聊iOS中网络编程长连接的那些事
移动端IM开发者必读(一):通俗易懂,理解移动网络的“弱”和“慢”
移动端IM开发者必读(二):史上最全移动弱网络优化方法总结
IPv6技术详解:基本概念、应用现状、技术实践(上篇)
IPv6技术详解:基本概念、应用现状、技术实践(下篇)
从HTTP/0.9到HTTP/2:一文读懂HTTP协议的历史演变和设计思路
脑残式网络编程入门(一):跟着动画来学TCP三次握手和四次挥手
脑残式网络编程入门(二):我们在读写Socket时,究竟在读写什么?
脑残式网络编程入门(三):HTTP协议必知必会的一些知识
脑残式网络编程入门(四):快速理解HTTP/2的服务器推送(Server Push)
脑残式网络编程入门(五):每天都在用的Ping命令,它到底是什么?
脑残式网络编程入门(六):什么是公网IP和内网IP?NAT转换又是什么鬼?
以网游服务端的网络接入层设计为例,理解实时通信的技术挑战
迈向高阶:优秀Android程序员必知必会的网络基础
全面了解移动端DNS域名劫持等杂症:技术原理、问题根源、解决方案等
美图App的移动端DNS优化实践:HTTPS请求耗时减小近半
Android程序员必知必会的网络通信传输层协议——UDP和TCP
IM开发者的零基础通信技术入门(一):通信交换技术的百年发展史(上)
IM开发者的零基础通信技术入门(二):通信交换技术的百年发展史(下)
IM开发者的零基础通信技术入门(三):国人通信方式的百年变迁
IM开发者的零基础通信技术入门(四):手机的演进,史上最全移动终端发展史
IM开发者的零基础通信技术入门(五):1G到5G,30年移动通信技术演进史
IM开发者的零基础通信技术入门(六):移动终端的接头人——“基站”技术
IM开发者的零基础通信技术入门(七):移动终端的千里马——“电磁波”
IM开发者的零基础通信技术入门(八):零基础,史上最强“天线”原理扫盲
IM开发者的零基础通信技术入门(九):无线通信网络的中枢——“核心网”
IM开发者的零基础通信技术入门(十):零基础,史上最强5G技术扫盲
IM开发者的零基础通信技术入门(十一):为什么WiFi信号差?一文即懂!
IM开发者的零基础通信技术入门(十二):上网卡顿?网络掉线?一文即懂!
IM开发者的零基础通信技术入门(十三):为什么手机信号差?一文即懂!
IM开发者的零基础通信技术入门(十四):高铁上无线上网有多难?一文即懂!
IM开发者的零基础通信技术入门(十五):理解定位技术,一篇就够
百度APP移动端网络深度优化实践分享(一):DNS优化篇
百度APP移动端网络深度优化实践分享(二):网络连接优化篇
>> 更多同类文章 ……

(本文同步发布于:http://www.52im.net/thread-2472-1-1.html

百度APP移动端网络深度优化实践分享(一):DNS优化篇的更多相关文章

  1. 百度APP移动端网络深度优化实践分享(二):网络连接优化篇

    本文由百度技术团队“蔡锐”原创发表于“百度App技术”公众号,原题为<百度App网络深度优化系列<二>连接优化>,感谢原作者的无私分享. 一.前言 在<百度APP移动端网 ...

  2. 百度APP移动端网络深度优化实践分享(三):移动端弱网优化篇

    本文由百度技术团队“蔡锐”原创发表于“百度App技术”公众号,原题为<百度App网络深度优化系列<三>弱网优化>,感谢原作者的无私分享. 一.前言 网络优化解决的核心问题有三个 ...

  3. 数据库优化实践【MS SQL优化开篇】

    数据库定义: 数据库是依照某种数据模型组织起来并存在二级存储器中的数据集合,此集合具有尽可能不重复,以最优方式为特定组织提供多种应用服务,其数据结构独立于应用程序,对数据的CRUD操作进行统一管理和控 ...

  4. [置顶] 数据库优化实践【MS SQL优化开篇】

    数据库定义: 数据库是依照某种数据模型组织起来并存在二级存储器中的数据集合,此集合具有尽可能不重复,以最优方式为特定组织提供多种应用服务,其数据结构独立于应用程序,对数据的CRUD操作进行统一管理和控 ...

  5. 一套海量在线用户的移动端IM架构设计实践分享(含详细图文)(转)

    1.写在前面 1.1.引言 如果在没有太多经验可借鉴的情况下,要设计一套完整可用的移动端IM架构,难度是相当大的.原因在于,IM系统(尤其是移动端IM系统)是多种技术和领域知识的横向应用综合体:网络编 ...

  6. Mysql慢查询定位和优化实践分享

    调优目标:提高io的利用率,减少无谓的io能力浪费. 1.打开慢查询日志定位慢sql: my.cnf: slow_query_log slow_query_log_file=mysql.slow lo ...

  7. 美图App的移动端DNS优化实践:HTTPS请求耗时减小近半

    本文引用了颜向群发表于高可用架构公众号上的文章<聊聊HTTPS环境DNS优化:美图App请求耗时节约近半案例>的部分内容,感谢原作者. 1.引言 移动互联网时代,APP 厂商之间的竞争非常 ...

  8. CDN HTTPS安全加速基本概念、解决方案及优化实践

    大家都知道,HTTP 本身是明文传输的,没有经过任何安全处理,网站HTTPS解决方案通过在HTTP协议之上引入证书服务,完美解决网站的安全问题.本文将为大家介绍阿里云CDN HTTPS安全加速传输的基 ...

  9. Hadoop YARN:调度性能优化实践(转)

    https://tech.meituan.com/2019/08/01/hadoop-yarn-scheduling-performance-optimization-practice.html 文章 ...

随机推荐

  1. titanium环境配置

    ###### **工具:** > * [titanium studio](http://www.appcelerator.com/product/) > * [node.js](https ...

  2. CentOS6.*安装gitolite

    http://www.kankanews.com/ICkengine/archives/64748.shtml 2人收藏此文章, 发表于4小时前(2013-10-22 16:12) , 已有26次阅读 ...

  3. Android 超高仿微信图片选择器 图片该这么加载

    转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/39943731,本文出自:[张鸿洋的博客] 1.概述 关于手机图片加载器,在当今像 ...

  4. 关于基线baseline及与inline-block、vertical-aline等属性的关系(完善中.......)

    1. 基本含义 基线(base line):而是英文字母x的下端沿,是a,c,z,x等字母的底边线,并不是汉字文字的下端沿,.下图的红色线即为基线.凡是涉及到垂直方向的排版或者对齐的,都离不开最最基本 ...

  5. anguments

    anguments是一个对象,长得很像数组的对象,但不是数组,而是伪数组. arguments的内容是函数运行时的实参列表 (function(d, e, f) { console.log(argum ...

  6. TestNG详解-深度好文

    转自: https://blog.csdn.net/lykangjia/article/details/56485295 TestNG详解-深度好文 2017年02月22日 14:51:52 阅读数: ...

  7. CSS操作笔记

    编写css样式:1. 标签的style属性2. 写在head里面 style标签中写样式- id选择区#i1{background-color: #2459a2;height: 48px;}- cla ...

  8. B20J_3231_[SDOI2014]旅行_树链剖分+线段树

    B20J_3231_[SDOI2014]旅行_树链剖分+线段树 题意: S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,城市信仰不同的宗教,为了方便,我们用不同的正整数代表各种宗教. S国 ...

  9. 机器学习类别不平衡处理之欠采样(undersampling)

    类别不平衡就是指分类任务中不同类别的训练样例数目差别很大的情况 常用的做法有三种,分别是1.欠采样, 2.过采样, 3.阈值移动 由于这几天做的project的target为正值的概率不到4%,且数据 ...

  10. Postman----Presets(预先设置)的使用

    使用场景: 当我们在进行接口测试post请求时,headers是必填项,我们将一个A接口的headers编写后测试完成,再次进行B接口的测试,需重新编写headers,为了简单操作,我们就用到了Pre ...