Python网络爬虫精要
目的
学习如何从互联网上获取数据。数据科学必须掌握的技能之一。
本文所用到的第三方库如下: requests, parsel, selenium
requests负责向网页发送HTTP请求并得到响应,parsel负责解析响应字符串,selenium负责JavaScript的渲染。
网络爬虫是什么
网络爬虫是一种按照一定的规则,自动地抓取网站信息的程序或者脚本。
如何爬取网站信息
写爬虫之前,我们必须确保能够爬取目标网站的信息。
不过在此之前必须弄清以下三个问题:
网站是否已经提供了api
网站是静态的还是动态的
网站是否有反爬的对策
情形1:开放api的网站
一个网站倘若开放了api,那你就可以直接GET到它的json数据。
比如xkcd的about页就提供了api供你下载
import requests
requests.get('https://xkcd.com/614/info.0.json').json()
那么如何判断一个网站是否开放api呢?有3种方法:
在站内寻找api入口
用搜索引擎搜索“某网站 api”
抓包。有的网站虽然用到了ajax(比如果壳网的瀑布流文章),但是通过抓包还是能够获取XHR里的json数据的。
怎么抓包:F12 - Network - F5刷新即可 | 或者用fiddle等工具也可以
情形2:不开放api的网站
如果此网站是静态页面,那么你就可以用requests库发送请求,再用HTML解析库(lxml、parsel等)来解析响应的text
解析库强烈推荐parsel,不仅语法和css选择器类似,而且速度也挺快,Scrapy用的就是它。
你需要了解一下css选择器的语法(xpath也行),并且学会看网页的审查元素。
比如获取konachan的所有原图链接
from parsel import Selector
res = requests.get('https://konachan.com/post')
tree = Selector(text=res.text)
imgs = tree.css('a.directlink::attr(href)').extract()
如果此网站是动态页面,先用selenium来渲染JS,再用HTML解析库来解析driver的page_source。
比如获取hitomi.la的数据(这里把chrome设置成了无头模式)
from selenium import webdriver
options = webdriver.ChromeOptions()
options.add_argument('--headless')
driver = webdriver.Chrome(options=options)
driver.get('https://hitomi.la/type/gamecg-all-1.html')
tree = Selector(text=driver.page_source)
gallery_content = tree.css('.gallery-content > div')
情形3:反爬的网站
目前的反爬策略常见的有:验证码、登录、封ip等。
验证码:利用打码平台破解(如果硬上的话用opencv或keras训练图)
登录:利用requests的post或者selenium模拟用户进行模拟登陆
封ip:买些代理ip(免费ip一般都不管用),requests中传入proxies参数即可
其他防反爬方法:伪装User-Agent,禁用cookies等
推荐用fake-useragent来伪装User-Agent
from fake_useragent import UserAgent
headers = {'User-Agent': UserAgent().random}
res = requests.get(url, headers=headers)
如何编写结构化的爬虫
如果能成功地爬取网站信息,那么你已经成功了一大半。
其实爬虫的架构很简单,无非就是创造一个tasklist,对tasklist里的每一个task调用crawl函数。
大多数网页的url构造都是有规律的,你只需根据它用列表推倒式来构造出tasklist对于那些url不变的动态网页,先考虑抓包,不行再用selenium点击下一页
如果追求速度的话,可以考虑用concurrent.futures或者asyncio等库。
import requests
from parsel import Selector
from concurrent import futures
domain = 'https://www.doutula.com'
def crawl(url):
res = requests.get(url)
tree = Selector(text=res.text)
imgs = tree.css('img.lazy::attr(data-original)').extract()
# save the imgs ...
if __name__ == '__main__':
tasklist = [f'{domain}/article/list/?page={i}' for i in range(1, 551)]
with futures.ThreadPoolExecutor(50) as executor:
executor.map(crawl, tasklist)
数据存储的话,看你的需求,一般都是存到数据库中,只要熟悉对应的驱动即可。
常用的数据库驱动有:pymysql(MySQL),pymongo(MongoDB)
如果你需要框架的话
文章读到这里,你应该对爬虫的基本结构有了一个清晰的认识,这时你可以去上手框架了。
轻量级框架(looter):https://github.com/alphardex/looter
工业级框架(scrapy):https://github.com/scrapy/scrapy
Python网络爬虫精要的更多相关文章
- 《精通python网络爬虫》笔记
<精通python网络爬虫>韦玮 著 目录结构 第一章 什么是网络爬虫 第二章 爬虫技能概览 第三章 爬虫实现原理与实现技术 第四章 Urllib库与URLError异常处理 第五章 正则 ...
- 《精通Python网络爬虫》|百度网盘免费下载|Python爬虫实战
<精通Python网络爬虫>|百度网盘免费下载|Python爬虫实战 提取码:7wr5 内容简介 为什么写这本书 网络爬虫其实很早就出现了,最开始网络爬虫主要应用在各种搜索引擎中.在搜索引 ...
- 关于Python网络爬虫实战笔记③
Python网络爬虫实战笔记③如何下载韩寒博客文章 Python网络爬虫实战笔记③如何下载韩寒博客文章 target:下载全部的文章 1. 博客列表页面规则 也就是, http://blog.sina ...
- 关于Python网络爬虫实战笔记①
python网络爬虫项目实战笔记①如何下载韩寒的博客文章 python网络爬虫项目实战笔记①如何下载韩寒的博客文章 1. 打开韩寒博客列表页面 http://blog.sina.com.cn/s/ar ...
- python 网络爬虫(二) BFS不断抓URL并放到文件中
上一篇的python 网络爬虫(一) 简单demo 还不能叫爬虫,只能说基础吧,因为它没有自动化抓链接的功能. 本篇追加如下功能: [1]广度优先搜索不断抓URL,直到队列为空 [2]把所有的URL写 ...
- python网络爬虫学习笔记
python网络爬虫学习笔记 By 钟桓 9月 4 2014 更新日期:9月 4 2014 文章文件夹 1. 介绍: 2. 从简单语句中開始: 3. 传送数据给server 4. HTTP头-描写叙述 ...
- Python网络爬虫
http://blog.csdn.net/pi9nc/article/details/9734437 一.网络爬虫的定义 网络爬虫,即Web Spider,是一个很形象的名字. 把互联网比喻成一个蜘蛛 ...
- Python 正则表达式 (python网络爬虫)
昨天 2018 年 01 月 31 日,农历腊月十五日.20:00 左右,152 年一遇的月全食.血月.蓝月将今晚呈现空中,虽然没有看到蓝月亮,血月.月全食也是勉强可以了,还是可以想像一下一瓶蓝月亮洗 ...
- Python网络爬虫笔记(五):下载、分析京东P20销售数据
(一) 分析网页 下载下面这个链接的销售数据 https://item.jd.com/6733026.html#comment 1. 翻页的时候,谷歌F12的Network页签可以看到下面 ...
随机推荐
- AlertConfirmDialog【基于AlertDialog的确认取消对话框】
版权声明:本文为HaiyuKing原创文章,转载请注明出处! 前言 确认取消对话框,基于AlertDialog.不是基于DialogFragment. 按钮文本可以根据实际情况更换. 效果图 代码分析 ...
- Perl多线程(1):解释器线程的特性
线程简介 线程(thread)是轻量级进程,和进程一样,都能独立.并行运行,也由父线程创建,并由父线程所拥有,线程也有线程ID作为线程的唯一标识符,也需要等待线程执行完毕后收集它们的退出状态(比如使用 ...
- Jetson Nano Developer Kit
The Jetson Nano Developer Kit is an AI computer for learning and for making. 一个推理框架,用于部署模型到嵌入式设备. ...
- int16, int32, int64等类型说明
Int16 相当于 short 占2个字节 -32768 ~ 32767 Int32 相当于 int 占4个字节 -2147483648 ~ 2147483647 Int64 ...
- java实现 批量转换文件编码格式
一.场景说明 不知道大家有没有遇到过之前项目是GBK,现在需要全部换成UTF-8的情况.反正我是遇到了. eclipse可以改变项目的编码格式,但是文件如果直接转换的话里面的中文就会全部乱码,需要先复 ...
- 【Tomcat】Tomcat工作原理及简单模拟实现
Tomcat应该都不陌生,我们经常会把写好的代码打包放在Tomcat里并启动,然后在浏览器里就能愉快的调用我们写的代码来实现相应的功能了,那么Tomcat是如何工作的? 一.Tomcat工作原理 我们 ...
- 分布式系统唯一ID的生成方案讨论
在分布式系统下唯一id问题,就是id咋生成?比如分表分库,因为要是一个表分成多个表之后,每个表的id都是从1开始累加自增长,那是不对的.举个例子,一个表拆分为了2张表,每个表的id都从1开始累加,这个 ...
- 20190421-那些年使用过的CSS预处理器(CSS Preprocessor)
写在前面的乱七八糟的前言: emmm,不得不说,早上七点是个好时间,公园里跳广场舞的大妈,街边卖菜刀看报的大爷,又不得不说,广州图书馆是个好地方,该有的安静,该有的人气,听着楼下小孩子的声音,看着周围 ...
- 模板引擎artTemplate的使用
1.引入template文件 <script src = js/template-native.js></script> 2.写模板 <script type=" ...
- 一、Snapman多人协作电子表格之——Snapman自我介绍
一.Snapman系统介绍 Snapman是一个真正现代化的电子表格系统:QQ是即时通讯软件,那Snapman就是一个即时工作系统. 微软CEO纳德拉说:Excel才是微软最伟大的产品,Excel将所 ...