bzoj 4872: [Shoi2017]分手是祝愿 [期望DP]
4872: [Shoi2017]分手是祝愿
题意:n个灯开关游戏,按i后i的约数都改变状态。随机选择一个灯,如果当前最优策略\(\le k\)直接用最优策略。问期望步数\(\cdot n! \mod 1003\)
50% n=k 送分...从大到小选就行了...实际上送了80分...
这个期望DP没想到不应该啊
\(f[i]\)表示还有i步可以结束的期望步数
f[i+1] = ...
\]
但是k=0就gg了
考虑差分f,或者说\(g[i]\)表示i到i-1步的期望步数
\]
答案就是\(g[最优策略步数]\)啰
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = 1e5+5, P = 100003, mo = P;
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
}
int n, k, a[N];
int mark[N];
ll inv[N], g[N], fac = 1;
void solve() {
int t = 0;
for(int i=n; i>=1; i--) {
int p = a[i];
for(int j=i+i; j<=n; j+=i) if(mark[j]) p ^= 1;
if(p) mark[i] = 1, t++;
}
if(t <= k) {printf("%lld", t * fac %mo); return;}
inv[1] = 1;
for(int i=2; i<=n; i++) inv[i] = (P - P/i) * inv[P%i] %P;
for(int i=1; i<=k; i++) g[i] = 1;
g[n] = 1;
for(int i=n-1; i>k; i--) g[i] = ((n-i) * g[i+1] %mo + n) * inv[i] %mo;
ll ans = 0;
for(int i=1; i<=t; i++) ans += g[i];
printf("%lld", ans * fac %mo);
}
int main() {
freopen("in", "r", stdin);
n=read(); k=read();
for(int i=1; i<=n; i++) a[i] = read(), fac = fac * i %mo;
solve();
}
bzoj 4872: [Shoi2017]分手是祝愿 [期望DP]的更多相关文章
- 【BZOJ】4872: [Shoi2017]分手是祝愿 期望DP
[题意]给定n盏灯的01状态,操作第 i 盏灯会将所有编号为 i 的约数的灯取反.每次随机操作一盏灯直至当前状态能够在k步内全灭为止(然后直接灭),求期望步数.n,k<=10^5. [算法]期望 ...
- BZOJ 4827 [Shoi2017]分手是祝愿 ——期望DP
显然,考虑当前状态最少需要几步,直接贪心即可. 显然我们只需要考虑消掉这几个就好了. 然后发现,关系式找出来很简单,是$f(i) f(i+1) f(i-1)$之间的. 但是计算的时候并不好算. 所以把 ...
- bzoj 4872: [Shoi2017]分手是祝愿
Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态 ...
- 【bzoj4872】[Shoi2017]分手是祝愿 期望dp
Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态 ...
- [BZOJ4872][六省联考2017]分手是祝愿(期望DP)
4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 516 Solved: 342[Submit][Statu ...
- P3750 [六省联考2017]分手是祝愿 期望DP
\(\color{#0066ff}{ 题目描述 }\) Zeit und Raum trennen dich und mich. 时空将你我分开. B 君在玩一个游戏,这个游戏由 \(n\) 个灯和 ...
- 【BZOJ4872】【SHOI2017】分手是祝愿 期望DP
题目大意 有\(n\)盏灯和\(n\)个开关,初始时有的灯是亮的,有的灯是暗的.按下第\(i\)个开关会使第\(j\)盏灯的状态被改变,其中\(j|i\).每次你会随机操作一个开关,直到可以通过不多于 ...
- [六省联考2017]分手是祝愿 期望DP
表示每次看见期望的题就很懵逼... 但是这题感觉还是值得一做,有可借鉴之处 要是下面这段文字格式不一样的话(虽然好像的确不一样,我也不知道为什么,是直接从代码里面复制出来的,因为我一般都是习惯在代码里 ...
- [六省联考2017]分手是祝愿——期望DP
原题戳这里 首先可以确定的是最优策略一定是从大到小开始,遇到亮的就关掉,因此我们可以\(O(nlogn)\)的预处理出初始局面需要的最小操作次数\(tot\). 然后容(hen)易(nan)发现即使加 ...
随机推荐
- SpringMVC框架学习笔记(4)——结果跳转方式
1.设置ModelAndView对象.根据View和视图解析器跳转到指定页面(视图解析器前缀+viewname+视图解析器后缀) @Override public ModelAndView handl ...
- JAVA经典算法面试40题及答案
现在是3月份,也是每年开年企业公司招聘的高峰期,同时有许多的朋友也出来找工作.现在的招聘他们有时会给你出一套面试题或者智力测试题,也有的直接让你上机操作,写一段程序.算法的计算不乏出现,基于这个原因我 ...
- [国嵌笔记][013][Mini2440开发板介绍]
系统资源 处理器:三星 S3C2440A ARM9 内存:64M SDRAM Nor Flash:2MB Nand Flash:256MB LCD:3.5寸 分辨率320*240 启动模式 从nan ...
- logback的使用和logback.xml详解
一.logback的介绍 Logback是由log4j创始人设计的另一个开源日志组件,官方网站: http://logback.qos.ch.它当前分为下面下个模块: logback-core:其它两 ...
- 织梦CMS首页调用分类信息栏目及列表方法
不懂代码,搜索学习一晚上,都是说调用特定栏目分类信息列表的,用这个代码 {dede:arclistsg row='10' titlelen='24' orderby='pubdate' channel ...
- dedecms下的tplcache模板缓存文件过多怎么清理?
时间:2016-04-18 09:32来源:www.ucbug.cc作者:网络 相信很多站长,或者seoer人员在备份用dedecms程序开发的网站时,发现下载到tplcache这个文件夹内容时候花了 ...
- Shell常用命令整理
http://blog.csdn.net/junmail/article/details/4602745 1. ls: 类似于dos下的dir命令 ls最常用的参数有三个: -a -l -F. l ...
- webpack模块机制浅析【一】
webpack模块机制浅析[一] 今天看了看webpack打包后的代码,所以就去分析了下代码的运行机制. 下面这段代码是webpack打包后的最基本的形式,可以说是[骨架] (function(roo ...
- J.U.C JMM. pipeline.指令重排序,happen-before
pipeline: 现在的CPU一般采用流水线方式来执行指令.一个指令执行周期被分成:取值,译码,执行,访存,写会,更新PC若干阶段.然后,多条指令可以同时存在于流水线中,同时被执行,来提高系统的吞吐 ...
- CCF系列之相反数(201403-1)
试题名称: 相反数 试题编号: 201403-1时间限制: 1.0s 内存限制: 256.0MB 问题描述 有 N 个非零且各不相同的整数.请你编一个程序求出它们中有多少对相反数(a 和 -a 为一对 ...