题目链接:

[BJOI2019]排兵布阵

对于每座堡垒,将$s$个对手排序,显然如果安排的兵力能打败第$i$个对手就一定能打败前$i-1$个。

那么对于第$i$座城堡,可以看做有$s+1$个物品(可以不安排兵力),第$j$个物品代价为$2*v[j]+1$,收益为$i*j$。

剩下的只需要将每座城堡的所有物品放在一组然后分组背包即可。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int f[120][20010];
int cnt[120];
int g[120][120];
int h[120][120];
int s[120];
int mp[120][120];
int n,m,k;
int main()
{
scanf("%d%d%d",&k,&n,&m);
for(int i=1;i<=k;i++)
{
for(int j=1;j<=n;j++)
{
scanf("%d",&mp[i][j]);
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=k;j++)
{
s[j]=mp[j][i];
}
sort(s+1,s+1+k);
for(int j=1;j<=k;j++)
{
if(2*s[j]+1<=m)
{
g[i][++cnt[i]]=2*s[j]+1;
h[i][cnt[i]]=i*j;
}
}
}
for(int i=1;i<=n;i++)
{
for(int j=0;j<=m;j++)
{
for(int k=0;k<=cnt[i];k++)
{
if(j>=g[i][k])
{
f[i][j]=max(f[i][j],f[i-1][j-g[i][k]]+h[i][k]);
}
}
}
}
printf("%d",f[n][m]);
}

[BJOI2019]排兵布阵——分组背包的更多相关文章

  1. [BJOI2019]排兵布阵(动态规划)

    [BJOI2019]排兵布阵(动态规划) 题面 洛谷 题解 暴力dp: 设\(f[i][j]\)表示考虑到了第\(i\)座城市用了\(j\)人的最大收益,枚举在这个城市用多少人就可以了. 优化: 发现 ...

  2. [BJOI2019]排兵布阵 DP

    [BJOI2019]排兵布阵 DP 比较好想的DP,设\(dp[i][j]\)表示第\(i\)个城堡时,已派出\(j\)个士兵.决策时,贪心派出恰好严格大于某一玩家派出的数量的两倍(不然浪费).我们发 ...

  3. [BJOI2019] 排兵布阵

    题目 这个\(dp\)出在普及都算水题吧 直接背包,\(O(nms)\)跑不满,非常稳 #include<cstdio> #include<vector> #include&l ...

  4. luogu P5322 [BJOI2019]排兵布阵

    传送门 普及dp 设\(f_{i,j}\)表示前\(i\)个城堡,用\(j\)人的最大价值,转移枚举一个对手,如果这个对手在\(i\)这个城堡人数是第\(k\)小的,那么用\(2a_i+1\)人可以得 ...

  5. LuoguP5322 [BJOI2019]排兵布阵(DP)

    城为物,人为容,价值?排序后,一切都明了 #include <iostream> #include <cstdio> #include <cstring> #inc ...

  6. 【LOJ】#3092. 「BJOI2019」排兵布阵

    LOJ#3092. 「BJOI2019」排兵布阵 这题就是个背包啊,感觉是\(nms\)的但是不到0.2s,发生了什么.. 就是设\(f[i]\)为选了\(i\)个人最大的代价,然后有用的人数只有\( ...

  7. HDU 4539郑厂长系列故事――排兵布阵(状压DP)

    HDU 4539  郑厂长系列故事――排兵布阵 基础的状压DP,首先记录先每一行可取的所哟状态(一行里互不冲突的大概160个状态), 直接套了一个4重循环居然没超时我就呵呵了 //#pragma co ...

  8. HDU 4539 郑厂长系列故事——排兵布阵

    http://acm.hdu.edu.cn/showproblem.php?pid=4539 郑厂长系列故事——排兵布阵 Time Limit: 10000/5000 MS (Java/Others) ...

  9. 郑厂长系列故事——排兵布阵 hdu4539(状态压缩DP)

    郑厂长系列故事——排兵布阵 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)To ...

随机推荐

  1. SLAM+语音机器人DIY系列:(二)ROS入门——3.在ubuntu16.04中安装ROS kinetic

    摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...

  2. Microsoft.Office.Interop.Excel 报错

    Microsoft.Office.Interop.Excel 报错 引用dll 在以下目录 C:\Windows\assembly\GAC_MSIL\Microsoft.Office.Interop. ...

  3. 海康&大华&DSS视频拉流-RTSP转RTMP多媒体播放技术

    海康&大华&DSS获取RTSP 实时流 海康:rtsp://[username]:[password]@[ip]:[port]/[codec]/[channel]/[subtype]/ ...

  4. js中关于两个变量的比较

    今天在匆忙的写代码过程中,测试突然跑过来跟我说,有一个小的bug,但是不能完全的复现,但确实存在.需要我们这边参与查找.首先来说一下我们这个的业务逻辑,其实非常的简单,就是一个开房间的后台,里面有一项 ...

  5. H5与C3权威指南笔记--transition动画

    translation:过渡 举个栗子:transition: width 1s linear; transition有三个属性,分别是transition-property, transition- ...

  6. DVWA 黑客攻防演练(十三)JS 攻击 JavaScript Attacks

    新版本的 DVWA 有新东西,其中一个就是这个 JavaScript 模块了. 玩法也挺特别的,如果你能提交 success 这个词,成功是算你赢了.也看得我有点懵逼. 初级 如果你改成 " ...

  7. spark als scala实现(二)

    Vi  t1.txt1,101,5.01,102,3.01,103,2.52,101,2.02,102,2.52,103,5.02,104,2.03,101,2.53,104,4.03,105,4.5 ...

  8. 爬虫技术实现空间相册采集器V.0.0.1版本

    一.    功能需求分析: 在很多时候我们需要做这样一个事情:我们想把我们QQ空间上的相册高清图像下载下来,怎么做?到网上找软件?答案是否定的,理由之一:网上很多软件不知有没有病毒,第二它有可能捆了很 ...

  9. 【spring源码分析】IOC容器初始化(一)

    前言:spring主要就是对bean进行管理,因此IOC容器的初始化过程非常重要,搞清楚其原理不管在实际生产或面试过程中都十分的有用.在[spring源码分析]准备工作中已经搭建好spring的环境, ...

  10. Navicat 进行数据库自动备份

    今天经历一次数据库丢库事件,顿时觉得定时备份数据库很重要. 但是每天自己手动备份实在是太麻烦了,于是乎,想到用计划任务进行每天定时自动备份. 发现Navicat自带就有备份  还可以直接计划任务,贼方 ...