python版本 3.7.0 

1、 安装 cmake

pip install cmake 

2、安装 boost

pip install boost 

3、安装 dlib

pip install dlib 

4、安装 face_recognition

pip install face_recognition 

5、验证

face_recognition 本地模型路径 要识别图片路径 
输出:文件名 识别的人名 

注意:文件名以人名命名 

6、寻找人脸位置

face_detection “路径” 
输出:人脸像素坐标 

7、调整灵敏度

face_recognition –tolerance 灵敏度 本地模型路径 要识别图片路径 
注:默认0.6,识别度越低识别难度越高 

8、计算每次面部距离

face_recognition –show-distance true 本地模型路径 要识别图片路径 

9、只是想知道每张照片中人物的姓名,却不关心文件名,可以这样做:

face_recognition 本地模型路径 要识别图片路径 | cut -d ‘,’ -f2

10、加速识别

face_recognition –cpus 使用内核数 本地模型路径 要识别图片路径 
使用四核识别: 
face_recognition –cpus 4 本地模型路径 要识别图片路径 
 
使用全部内核识别: 
face_recognition –cpus -1 本地模型路径 要识别图片路径

11、自动查找图像中的所有面孔

import face_recognition

image = face_recognition.load_image_file(“吴京.jpg”) 
face_locations = face_recognition.face_locations(image)

import face_recognition
import cv2
import numpy as np # This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
# other example, but it includes some basic performance tweaks to make things run a lot faster:
# 1. Process each video frame at 1/4 resolution (though still display it at full resolution)
# 2. Only detect faces in every other frame of video. # PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
# OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
# specific demo. If you have trouble installing it, try any of the other demos that don't require it instead. # Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0) # Load a sample picture and learn how to recognize it.
obama_image = face_recognition.load_image_file("obama.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[0] # Load a second sample picture and learn how to recognize it.
biden_image = face_recognition.load_image_file("biden.jpg")
biden_face_encoding = face_recognition.face_encodings(biden_image)[0] # Create arrays of known face encodings and their names
known_face_encodings = [
obama_face_encoding,
biden_face_encoding
]
known_face_names = [
"Barack Obama",
"Joe Biden"
] # Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True while True:
# Grab a single frame of video
ret, frame = video_capture.read() # Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1] # Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown" # # If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index] # Or instead, use the known face with the smallest distance to the new face
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index] face_names.append(name) process_this_frame = not process_this_frame # Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4 # Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) # Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) # Display the resulting image
cv2.imshow('Video', frame) # Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break # Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()  

彩蛋

import cv2
import threading
import face_recognition
import numpy as np
import os class camThread(threading.Thread):
def __init__(self, previewName, camID):
threading.Thread.__init__(self)
self.previewName = previewName
self.camID = camID
def run(self):
print("Starting " + self.previewName)
camPreview(self.previewName, self.camID) def camPreview(previewName, camID):
cv2.namedWindow(previewName)
video_capture = cv2.VideoCapture(camID)
if video_capture.isOpened():
rval, frame = video_capture.read()
else:
rval = False known_face_encodings = []
known_face_names = [] imagelist = os.listdir('./face/')
for imagename in imagelist:
image = face_recognition.load_image_file("./face/"+imagename)
face_encoding = face_recognition.face_encodings(image)[0]
known_face_encodings.append(face_encoding)
subname=imagename.split('.')[0]
known_face_names.append(subname)
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True while rval:
#cv2.imshow(previewName, frame)
rval, frame = video_capture.read()
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
rgb_small_frame = small_frame[:, :, ::-1]
if process_this_frame:
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = []
for face_encoding in face_encodings:
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown" face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index] face_names.append(name) process_this_frame = not process_this_frame for (top, right, bottom, left), name in zip(face_locations, face_names):
top *= 4
right *= 4
bottom *= 4
left *= 4 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) cv2.imshow(previewName, frame) if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.destroyWindow(previewName) thread1 = camThread("Camera 1", 0)
thread2 = camThread("Camera 2", 1) thread1.start()
thread2.start()

Python Face Detect Offline的更多相关文章

  1. python flask detect browser language

    python flask detect browser language   No problem. We won't show you that ad again. Why didn't you l ...

  2. appium+python自动化40-adb offline(5037端口被占)

    前言 adb连手机的时候经常会出现offline的情况,一般杀掉adb,然后重启adb可以解决. 如果发现不管怎么重启adb都连不上,一直出现offlie的情况,这个时候很大可能就是adb的5037端 ...

  3. appium+python自动化-adb offline(5037端口被占)

    前言 adb连手机的时候经常会出现offline的情况,一般杀掉adb,然后重启adb可以解决. 如果发现不管怎么重启adb都连不上,一直出现offlie的情况,这个时候很大可能就是adb的5037端 ...

  4. [Python]pip install offline 如何离线pip安装包

    痛点:目标机器无法连接公网,但是能使用rz.sz传输文件 思路:在能上网的机器是使用pip下载相关依赖包,然后传输至目标机器,进行安装 0. Install pip: http://pip-cn.re ...

  5. Runtime.getRuntime().exec()实现Java调用python程序

    使用Runtime.getRuntime().exec()来实现Java调用python,调用代码如下所示: import java.io.BufferedReader; import java.io ...

  6. 【python】使用plotly生成图表数据

    安装 在 ubuntu 环境下,安装 plotly 很简单 python 版本2.7+ pip install plotly 绘图 在 plotly 网站注册后,可以直接将生成的图片保存到网站上,便于 ...

  7. Linux下monit进程管理操作梳理

    Monit对运维人员来说可谓神器,它是一款功能非常丰富的进程.文件.目录和设备的监测工具,用于Unix平台.它可以自动修复那些已经停止运作的程序,特使适合处理那些由于多种原因导致的软件错误.Monit ...

  8. github上Devstack的一些变动,截至8.20

    从github下直接clone下来的代码在执行之前须要对一些文件进行改动,否则会出现关于REQUIREMENTS的错误 说明:代码前边是"-"号的,须要删除,代码前边是" ...

  9. 【Python项目】使用Face++的人脸识别detect API进行本地图片情绪识别并存入excel

    准备工作 首先,需要在Face++的主页注册一个账号,在控制台去获取API Key和API Secret. 然后在本地文件夹准备好要进行情绪识别的图片/相片. 代码 介绍下所使用的第三方库 ——url ...

随机推荐

  1. python学习第五讲,python基础语法之函数语法,与Import导入模块.

    目录 python学习第五讲,python基础语法之函数语法,与Import导入模块. 一丶函数简介 1.函数语法定义 2.函数的调用 3.函数的文档注释 4.函数的参数 5.函数的形参跟实参 6.函 ...

  2. 微信公众号开发C#系列-7、消息管理-接收事件推送

    1.概述 在微信用户和公众号产生交互的过程中,用户的某些操作会使得微信服务器通过事件推送的形式通知到开发者在开发者中心处设置的服务器地址,从而开发者可以获取到该信息.其中,某些事件推送在发生后,是允许 ...

  3. 【我们一起写框架】MVVM的WPF框架(一)—序篇

    前言 我想,有一部分程序员应该是在二三线城市的,虽然不知道占比,但想来应该不在少数. 我是这部分人群中的一份子. 我们这群人,面对的客户,大多是国内中小企业,或者政府的小部门.这类客户的特点是,资金有 ...

  4. Spring Boot(六):如何优雅的使用 Mybatis

    *:first-child{margin-top: 0 !important}.markdown-body>*:last-child{margin-bottom: 0 !important}.m ...

  5. [转]使用nodejs-koa2-mysql-sequelize-jwt 实现项目api接口

    本文转自:https://blog.csdn.net/yibowanbo/article/details/80521849 nodejs-koa2-mysql-sequelize-jwt技术栈:nod ...

  6. js动态生成层方法 不懂得加QQ 2270312758

    我们在WEB开发时,很多时候往往需要我们 JavaScript 来动态建立 html 元素,动态的设置相关的属性.比方说我们想要建立一个 div 层,则可以使用以下代码实现.一.直接建立 functi ...

  7. WPF ResourceDictionary 主题资源替换(一)

    当我们需要在程序中替换主题,更换另一套背景.颜色.样式时,如何在不修改资源Key值,直接替换呢? 问题&疑问 1. Key值冲突 同一ResourceDictionary中,不可以使用相同Ke ...

  8. Docker 容器镜像删除

    1.停止所有的container,这样才能够删除其中的images: docker stop $(docker ps -a -q) 如果想要删除所有container的话再加一个指令: docker ...

  9. 你必须知道的.net读书笔记之第二回深入浅出关键字---对抽象编程:接口和抽象类

    请记住,面向对象思想的一个最重要的原则就是:面向接口编程. 借助接口和抽象类,23个设计模式中的很多思想被巧妙的实现了,我认为其精髓简单说来就是:面向抽象编程. 抽象类应主要用于关系密切的对象,而接口 ...

  10. 初学Shiro

    Shiro Shiro是什么? Apache Shiro是Java的一个安全(权限)框架. Shiro可以非常容易的开发出足够好的应用,其不仅可以用在JavaSE环境下,也可以用者JavaEE环境下 ...