题目描述

某 乡有n个村庄(1<n<15),有一个售货员,他要到各个村庄去售货,各村庄之间的路程s(0<s<1000)是已知的,且A村 到B村与B村到A村的路大多不同。为了提高效率,他从商店出发到每个村庄一次,然后返回商店所在的村,假设商店所在的村庄为1,他不知道选择什么样的路线 才能使所走的路程最短。请你帮他选择一条最短的路。

输入

村庄数n和各村之间的路程(均是整数)。

输出

最短的路程。

样例输入

3 0 2 1 1 0 2 2 1 0

样例输出

3
 
题解:
F[i][j],j是状压后的数,是1表示经过,0表示不经过,表示从起点到i经过k1,k2,k3(k&j==1)的村庄的最小路程.
然后就是DP方程
F[j][k|(1<<j-1)]=max(F[i][k]+dis[i][j]) 其中(1<<i-1)&j==1  (1<<j-1)&j==0
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int gi(){
int str=;char ch=getchar();
while(ch>'' || ch<'')ch=getchar();
while(ch>='' && ch<='')str=str*+ch-,ch=getchar();
return str;
}
const int N=;
int n;int dis[N][N];int F[N][<<N];
int main()
{
int x;
n=gi();int pp=(<<n)-,tmp;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j]=gi();
memset(F,/,sizeof(F));
F[][]=;
for(int k=;k<=pp;k++)
{
for(int i=;i<=n;i++)
{
if(!((<<i-)&k))continue;
for(int j=;j<=n;j++)
{
if(j==i || (<<j-)&k || !dis[i][j])continue;
tmp=F[i][k]+dis[i][j];
if(tmp<F[j][k|(<<j-)])F[j][k|(<<j-)]=tmp;
}
}
}
int ans=;
for(int i=;i<=n;i++)
{
if(dis[i][]==)continue;
if(F[i][pp]+dis[i][]<ans)ans=F[i][pp]+dis[i][];
}
printf("%d",ans);
return ;
}
 

[LSGDOJ 1505]售货员的难题 状压DP的更多相关文章

  1. codevs2596 售货员的难题(状压dp)

    2596 售货员的难题  时间限制: 1 s  空间限制: 32000 KB  题目等级 : 钻石 Diamond     题目描述 Description 某乡有n个村庄(1<n<=15 ...

  2. 洛谷P1171 售货员的难题【状压DP】

    题目描述 某乡有n个村庄(1 输入格式: 村庄数n和各村之间的路程(均是整数). 输出格式: 最短的路程. 输入样例: 3 0 2 1 1 0 2 2 1 0 输出样例 3 说明 输入解释 3 {村庄 ...

  3. 2018.07.18 洛谷P1171 售货员的难题(状压dp)

    传送门 感觉是一道经典的状压dp,随便写了一发卡了卡常数开了个O(2)" role="presentation" style="position: relati ...

  4. 状压dp(状态压缩&&dp结合)学习笔记(持续更新)

    嗯,作为一只蒟蒻,今天再次学习了状压dp(学习借鉴的博客) 但是,依旧懵逼·································· 这篇学习笔记是我个人对于状压dp的理解,如果有什么不对的 ...

  5. 状压dp大总结1 [洛谷]

    前言 状态压缩是一种\(dp\)里的暴力,但是非常优秀,状态的转移,方程的转移和定义都是状压\(dp\)的难点,本人在次总结状压dp的几个题型和例题,便于自己以后理解分析状态和定义方式 状态压缩动态规 ...

  6. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  7. nefu1109 游戏争霸赛(状压dp)

    题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...

  8. poj3311 TSP经典状压dp(Traveling Saleman Problem)

    题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...

  9. [NOIP2016]愤怒的小鸟 D2 T3 状压DP

    [NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...

随机推荐

  1. C++之异常捕获和处理

    一.简介   在C++语言中,异常处理包括:throw表达式,try语句块,一套异常类.其中,异常类用于在throw表达式和相关的catch子句之间传递异常的具体信息.exception头文件定义了最 ...

  2. 敏捷冲刺每日报告--day1

    1 团队介绍 团队组成: PM:齐爽爽(258) 小组成员:马帅(248),何健(267),蔡凯峰(285)  Git链接:https://github.com/WHUSE2017/C-team 2 ...

  3. 20162328蔡文琛week07

    学号 2016-2017-2 <程序设计与数据结构>第X周学习总结 教材学习内容总结 多态引用在不同的时候可以指向不同类型的对象. 多态引用在运行时才将方法调用用于它的定义绑定在一起. 引 ...

  4. Java Client/Server 基础知识

    Java的网络类库支持多种Internet协议,包括Telnet, FTP 和HTTP (WWW),与此相对应的Java网络类库的子类库为: Java.net  Java.net.ftp  Java. ...

  5. tableView//collectionView加载时的动画

    - (UICollectionViewCell *)collectionView:(UICollectionView *)collectionView cellForItemAtIndexPath:( ...

  6. Flask Markup 上下文,request

    在模板渲染中,使用Markup转换变量中的特殊字符 from flask import Markup Markup函数对字符串进行转移处理再传递给render_template()函数 在浏览器中显示 ...

  7. JAVA中最容易让人忽视的基础。

    可能很多找编程工作的人在面试的时候都有这种感受,去到一个公司填写面试试题的时候,多数人往往死在比较基础的知识点上.不要奇怪,事实就是如此一般来说,大多数公司给出的基础题大概有122道,代码题19道左右 ...

  8. DBA 小记 — 分库分表、主从、读写分离

    前言 我在上篇博客 "Spring Boot 的实践与思考" 中比对不同规范的 ORM 框架应用场景的时候提到过主从与读写分离,本篇随笔将针对此和分库分表进行更深入地探讨. 1. ...

  9. Linq 巧用 Max,Sum

    IList<, , , , , }; var sum1 = intList.Sum(s => { == ) { return s; } ; }); Console.WriteLine(&q ...

  10. 新特性GTID

    什么是GTID 每提交一个事务,当前的执行过程都会拿到一个唯一的标识符,此标识符不仅对其源mysql 实列是唯一的而在给定的复制环境中的所有mysql 实列也是唯一的,所哟的事务与其GTID 之间都是 ...