题目戳这里

描述

小雪与小可可吵架了,他们决定以后互相再也不理对方了。尤其是,他们希望以后上学的路上不会再相遇。

我们将他们所在城市的道路网视作无限大的正交网格图,每一个整数点 (x,y) 对应了一个路口,相邻两个整数点之间有一条平行于 x 轴或平行于 y 轴的道路,其道路长度为 1。已经知道小雪家住在 (x_1,0) 处的路口附近,小可可的家住在 (x_2,0) 处的路口附近。另外我们还知道,小雪的学校在 (0,y_1) 处的路口附近,小可可的学校在 (0,y_2) 处的路口附近。其中保证 x_1 < x_2 且 y_1 < y_2。

因为上学不能迟到,所以小雪和小可可总是希望可以走最短路径去上学。同时为了避免见面,希望他们所选择的路线可以没有交点。

格式

输入格式

输入的第一行输入四个正整数,依次为 x_1, x_2, y_1, y_2,满足 x_1 < x_2 且 y_1 < y_2。

输出格式

在输出中,输出一个非负整数,表示可行方案的总数 ans 关于常数 10^9+7 取余后的值。

样例1

样例输入1

1 2 1 2

样例输出1

3

样例2

样例输入2

2 3 2 4

样例输出2

60

样例3

样例输入3

4 9 3 13

样例输出3

16886100

限制

对于30%的数据,0 < x_1,x_2,y_1,y_2<=500。
对于70%的数据,0 < x_1,x_2,y_1,y_2<=3000。
对于100%的数据,0 < x_1,x_2,y_1,y_2<=100000。

  本题考虑用容斥的思想。对于任意的最短路径path1和path2,若相交,则存在一个交点x。在x处交换两个路径,得到新的路径path3和path4,满足path3从(x1,0)到(0,y2)而path4从(x2,0)到(0,y1)。综上所述,整个问题的最后结果=“(x1,0)到(0,y1)的方案数”ד(x2,0)到(0,y2)的方案数”-“(x1,0)到(0,y2)的方案数”ד(x2,0)到(0,y1)的方案数”。

  

  怎么求方案数?

  ●平面直角坐标系中,从(0,0)走到(x,y)的最短路方法有多少种(只能沿xy轴正方向走)

  答案C(y+x,x)或者C(y+x,y)一共要走n+m步,从中选几步向上走或右走

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#define ll long long
#define mod 1000000007
using namespace std;
int x1,x2,y1,y2,fac[200005]; void pre(){
fac[1]=1;
for(int i=2;i<=y2+x2+10;i++)
fac[i]=1ll*fac[i-1]*i%mod;
} int mul(int a,int b){
int ans=1;
while(b){
if(b&1)ans=1ll*ans*a%mod;
a=1ll*a*a%mod;b>>=1;
}
return ans;
} int calc(int x,int y){
int ans=1ll*fac[x+y]*mul(fac[x],mod-2)%mod;
ans=1ll*ans*mul(fac[y],mod-2)%mod;
return ans;
} int main(){
scanf("%d%d%d%d",&x1,&x2,&y1,&y2);pre();
int t1=1ll*calc(x1,y1)*calc(x2,y2)%mod;
int t2=1ll*calc(x1,y2)*calc(x2,y1)%mod;
printf("%d",(t1-t2+mod)%mod);
return 0;
}

  

【vijos1943】上学路上的更多相关文章

  1. [AHOI2015 Junior] [Vijos P1943] 上学路上 【容斥+组合数】

    题目链接:Vijos - P1943 题目分析 这是 AHOI 普及组的题目,然而我并不会做= =弱到不行= = 首先,从 (x, 0) 到 (0, y) 的最短路,一定是只能向左走和向上走,那么用组 ...

  2. 2月4日 考试——迟到的 ACX

    迟到的 ACX 时限:1s 内存限制:128MB题目描述: 今天长沙下雪了,小 ACX 在上学路上欣赏雪景,导致上学迟到,愤怒的佘总给 ACX 巨佬出了一个题目想考考他,现在他找到你,希望你能帮帮他. ...

  3. 浅谈P/NP问题

    克雷数学研究所(Clay Mathematics Institute,CMI)是在1998年由商人兰顿·克雷(Landon T. Clay)和哈佛大学数学家亚瑟·杰夫(Arthur Jaffe)创立, ...

  4. CSP-J&S2019第二轮游记认证

    Day 0 我毕竟不是竞赛省,在黑龙江这个弱省任何初中都没有竞赛生的----在初中,文化课第一----永远如此. 因而,我并不能翘掉周五的文化课来复习或是提前前往省城参加下午2:00~6:00的试机. ...

  5. 《深入理解Java虚拟机》第 3 版里面到底多了哪些知识点?本文竟然得到了本书作者的认可!

    这是why的第 47 篇原创文章 荒腔走板 大家好,我是 why.老规矩,先是简短的荒腔走板聊聊生活. 上面的图是前几天拍的,那天晚上下班后,刚刚走进小区就看到了这一轮弯月和旁边那一颗特别特别亮的星星 ...

随机推荐

  1. django + nginx + uwsgi + websocket

    最近使用django框架做了一个简单的聊天机器人demo, 开发的过程中使用了django自带的websocket模块,当使用django框架自带的wsgi服务去启动的话,没有什么问题.如果要使用uw ...

  2. 一、Django的基本用法

    学习Django有一段时间了,整理一下,充当笔记. MVC 大部分开发语言中都有MVC框架 MVC框架的核心思想是:解耦 降低各功能模块之间的耦合性,方便变更,更容易重构代码,最大程度上实现代码的重用 ...

  3. Visual Studio Code初识与自动化构建工具安装

    1.Visual Studio Code如何新建文件夹 要自己手动在本地新建,然后再点击文件->打开文件夹即可. 之后你就可以任意添加文件了 2.如何使用自动化构建工具 通过自动化构建工具,用户 ...

  4. float、absolute、inline-block三者区别

    0.前言 float属性在css2中是一个热门的属性,被广泛应用于布局之中,同时由于不当使用float带来的问题也非常多,本文结合自己对float的理解以及实际项目中碰到float的相关问题,做一个详 ...

  5. Leetcode:Two Sum

    原题:https://leetcode.com/problems/two-sum/ 尝试了两种方法: 方法一: var twoSum = function(nums, target) { for(va ...

  6. Spring Security入门(1-13)Spring Security的投票机制和投票器

    1.三种表决方式,默认是 一票制AffirmativeBased public interface AccessDecisionManager { /** * 通过传递的参数来决定用户是否有访问对应受 ...

  7. 输入法searchLookUpEditd的使用

    输入法是DevExpress系列控件比较常用的一个控件.searchLookUpEditd控件集成了快捷输入法,可以使用拼音,五笔等方式快捷输入. 先展示一下输入法的效果

  8. 集智robot微信公众号开发笔记

    开发流程 公众号基本配置(首先得有公众平台账号) 在开发菜单的基本配置中填写好基本配置项 首先配置服务器地址.Token.和消息加密密钥(地址为开发者为微信验证留的接口.token可以随便填写,只要在 ...

  9. 在Debian或Ubuntu中安装和使用'搜狗输入法for linux'

    下载搜狗输入法 for linux点击 搜狗输入法 for linux 以下载安装包到本地 安装搜狗输入法 for linuxA.准备工作: (1) 连接网络.挂载系统安装盘 此安装过程需要网络连接, ...

  10. python KindEditord

    python 文本编辑器(KindEditord) 1.下载 官网下载:http://kindeditor.net/down.php 本地下载:http://files.cnblogs.com/fil ...