Area
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 5861   Accepted: 2612

Description

Being well known for its highly innovative products, Merck would definitely be a good target for industrial espionage. To protect its brand-new research and development facility the company has installed the latest system of surveillance robots patrolling the area. These robots move along the walls of the facility and report suspicious observations to the central security office. The only flaw in the system a competitor抯 agent could find is the fact that the robots radio their movements unencrypted. Not being able to find out more, the agent wants to use that information to calculate the exact size of the area occupied by the new facility. It is public knowledge that all the corners of the building are situated on a rectangular grid and that only straight walls are used. Figure 1 shows the course of a robot around an example area.

 
Figure 1: Example area. 
You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that simple formula for you, so your first task is to find the formula yourself. 

Input

The first line contains the number of scenarios. 
For each scenario, you are given the number m, 3 <= m < 100, of movements of the robot in the first line. The following m lines contain pairs 揹x dy�of integers, separated by a single blank, satisfying .-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair means that the robot moves on to a grid point dx units to the right and dy units upwards on the grid (with respect to the current position). You can assume that the curve along which the robot moves is closed and that it does not intersect or even touch itself except for the start and end points. The robot moves anti-clockwise around the building, so the area to be calculated lies to the left of the curve. It is known in advance that the whole polygon would fit into a square on the grid with a side length of 100 units. 

Output

The output for every scenario begins with a line containing 揝cenario #i:� where i is the number of the scenario starting at 1. Then print a single line containing I, E, and A, the area A rounded to one digit after the decimal point. Separate the three numbers by two single blanks. Terminate the output for the scenario with a blank line.

Sample Input

2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3

Sample Output

Scenario #1:
0 4 1.0 Scenario #2:
12 16 19.0
/*
poj 1265 Area 面积+多边形内点数 给你初始点以及每次走的方向,可以得到n个点的集合.然后计算这个多边的面积,多边形
内部包含的点数以及多边形边上的点数 因为多边形顶点都是整点,所以通过皮克定理可以得出其面积S和内部格点数目i、
边上格点数目j的关系:S = i + j/2 - 1.
所以我们可以先计算出多边的面积. 多边形边上的点数j满足一个GCD关系,可以求出
于是便能得到i hhh-2016-05-08 20:01:56
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <cmath>
#include <algorithm>
#include <functional>
#include <map>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef long long ll;
using namespace std;
const int maxn = 10100;
double PI = 3.1415926;
double eps = 1e-8; int sgn(double x)
{
if(fabs(x) < eps) return 0;
if(x < 0)
return -1;
else
return 1;
} struct Point
{
double x,y;
Point() {}
Point(double _x,double _y)
{
x = _x,y = _y;
}
Point operator -(const Point &b)const
{
return Point(x-b.x,y-b.y);
}
double operator ^(const Point &b)const
{
return x*b.y-y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
}; struct Line
{
Point s,t;
Line() {}
Line(Point _s,Point _t)
{
s = _s;
t = _t;
}
pair<int,Point> operator &(const Line&b)const
{
Point res = s;
if( sgn((s-t) ^ (b.s-b.t)) == 0) //通过叉积判断
{
if( sgn((s-b.t) ^ (b.s-b.t)) == 0)
return make_pair(0,res);
else
return make_pair(1,res);
}
double ta = ((s-b.s)^(b.s-b.t))/((s-t)^(b.s-b.t));
res.x += (t.x-s.x)*ta;
res.y += (t.y-s.y)*ta;
return make_pair(2,res);
}
};
Point lis[maxn];
int Stack[maxn],top; double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
}
bool cmp(Point a,Point b)
{
double t = (a-lis[0])^(b-lis[0]);
if(sgn(t) == 0)
{
return dist(a,lis[0]) <= dist(b,lis[0]);
}
if(sgn(t) < 0)
return false;
else
return true;
} bool Cross(Point a,Point b,Point c)
{
return (b.y-a.y)*(c.x-b.x) == (c.y-b.y)*(b.x-a.x);
} int GCD(int a,int b)
{
if(a < b)swap(a,b);
if(b == 0)
return a;
while(a % b)
{
int t = a%b;
a = b;
b = t;
}
return b;
} int main()
{
// freopen("in.txt","r",stdin);
int n,T;
int cas = 1;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
double x=0,y=0;
double x1,y1;
for(int i = 0; i < n; i++)
{
scanf("%lf%lf",&x1,&y1);
lis[i].x = x+x1;
lis[i].y = y+y1;
x = lis[i].x;
y = lis[i].y;
}
printf("Scenario #%d:\n",cas++);
double res = 0;
for(int i = 0;i < n;i++)
{
res += (lis[i]^lis[(i+1)%n])/2;
}
int Onum = 0;
for(int i = 0;i < n;i++)
{
int tx = abs(lis[i].x - lis[(i+1)%n].x);
int ty = abs(lis[i].y - lis[(i+1)%n].y);
Onum += GCD(tx,ty);
}
int Inum = res*2+2-Onum;
printf("%d %d %.1f\n\n",Inum/2,Onum,res);
}
return 0;
}

  

poj 1265 Area 面积+多边形内点数的更多相关文章

  1. poj 1265 Area【计算几何:叉积计算多边形面积+pick定理计算多边形内点数+计算多边形边上点数】

    题目:http://poj.org/problem?id=1265 Sample Input 2 4 1 0 0 1 -1 0 0 -1 7 5 0 1 3 -2 2 -1 0 0 -3 -3 1 0 ...

  2. POJ 1265 Area (Pick定理 & 多边形面积)

    题目链接:POJ 1265 Problem Description Being well known for its highly innovative products, Merck would d ...

  3. poj 1265 Area (Pick定理+求面积)

    链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:  ...

  4. poj 1654 Area(多边形面积)

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 17456   Accepted: 4847 Description ...

  5. poj 1654 Area(求多边形面积 && 处理误差)

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16894   Accepted: 4698 Description ...

  6. POJ 1265 /// 皮克定理+多边形边上整点数+多边形面积

    题目大意: 默认从零点开始 给定n次x y上的移动距离 组成一个n边形(可能为凹多边形) 输出其 内部整点数 边上整点数 面积 皮克定理 多边形面积s = 其内部整点in + 其边上整点li / 2 ...

  7. poj 1654 Area (多边形求面积)

    链接:http://poj.org/problem?id=1654 Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:  ...

  8. poj 1265 Area( pick 定理 )

    题目:http://poj.org/problem?id=1265 题意:已知机器人行走步数及每一步的坐标   变化量 ,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:1.以 ...

  9. POJ 1265 Area POJ 2954 Triangle Pick定理

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5227   Accepted: 2342 Description ...

随机推荐

  1. Flask 学习 十三 应用编程接口

    最近这些年,REST已经成为web services和APIs的标准架构,很多APP的架构基本上是使用RESTful的形式了. REST的六个特性: 客户端-服务器(Client-Server)服务器 ...

  2. MongoDb进阶实践之三 MongoDB查询命令详述

    一.引言           上一篇文章我们已经介绍了MongoDB数据库的最基本操作,包括数据库的创建.使用和删除数据库,文档的操作也涉及到了文档的创建.删除.更新和查询,当然也包括集合的创建.重命 ...

  3. wamp的mysql设置用户名和密码

    wamp下修改mysql root用户的登录密码 感谢作者:http://www.3lian.com/edu/2014/02-25/131010.html               1.安装好wam ...

  4. ESP8266 wifi 模块配置,Wechat+APP控制实现

    首先刷入安信可的AiCloud 2.0 SDK文件,AiCloud 2.0具体信息参见AiCloud 1.0 和AiCloud 2.0对比 APP见如下二维码下载. 1.安信可AiCloud 2.0 ...

  5. Web Api 利用 cors 实现跨域

    一.安装 cors 二.修改 Web.config <appSettings> <add key="cors:allowedMethods" value=&quo ...

  6. python入门(3)python的解释器

    python入门(3)python的解释器 Python写的程序是以.py为扩展名的文本文件.要运行代码,就需要Python解释器去执行.py文件. 由于整个Python语言从规范到解释器都是开源的, ...

  7. 译《Time, Clocks, and the Ordering of Events in a Distributed System》

    Motivation <Time, Clocks, and the Ordering of Events in a Distributed System>大概是在分布式领域被引用的最多的一 ...

  8. C++ 排列最优解算法思想

    枚举全排列 #include <iostream> #include <cstring> #include <string> using namespace std ...

  9. Vue框架axios请求(类似于ajax请求)

    Vue框架axios get请求(类似于ajax请求) 首先介绍下,这个axios请求最明显的地方,通过这个请求进行提交的时候页面不会刷新 <!DOCTYPE html> <html ...

  10. Spark:性能调优

    来自:http://blog.csdn.net/u012102306/article/details/51637366 资源参数调优 了解完了Spark作业运行的基本原理之后,对资源相关的参数就容易理 ...