bzoj 3244: [Noi2013]树的计数
Description
我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序。两棵不同的树的DFS序有可能相同,并且它们的BFS序也有可能相同,例如下面两棵树的DFS序都是1 2 4 5 3,BFS序都是1 2 3 4 5
现给定一个DFS序和BFS序,我们想要知道,符合条件的有根树中,树的高度的平均值。即,假如共有K棵不同的有根树具有这组DFS序和BFS序,且他们的高度分别是h1,h2,...,hk,那么请你输出
(h1+h2..+hk)/k
Solution
用期望的线性性拆成点对的贡献
我们发现如果点对 \((x,y)\) 必须处在不同层,那么期望 \(+1\),必须在相同层则没有贡献
如果不确定是否在同层,则为 \(0.5\)
现在只需要把点分类即可:
1.如果两个点在 \(bfs\) 序中相邻, \(bfs[a]<bfs[b]\),且满足 \(dfs[a]>dfs[b]\),那么就必须不同层
2.如果两个点在 \(dfs\) 序中相邻, \(dfs[a]<dfs[b]\),且满足 \(bfs[a]<bfs[b]\),代表这两个点的深度差不超过 \(1\),就意味着 \(bfs\) 序中,\(a\) 到 \(b\) 之间的点必须同层
考虑怎么满足这些约束:
条件 \(1\) 比较好判断,对于条件 \(2\) ,当一个点对确定深度差不超过一时,在 \(bfs\) 序中这两个点的中间一段必须同层,贡献已经确定是 \(0\),我们把中间的点打上一个标记,表示已经确定了贡献,可以用差分实现
#include<bits/stdc++.h>
using namespace std;
const int N=2e5+10;
int n,a[N],w[N],p[N],s[N],c[N],t[N],b[N];
int main(){
int x;
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&x),p[x]=i;
for(int i=1;i<=n;i++)scanf("%d",&x),a[p[x]]=i,b[i]=p[x];
t[1]++;c[1]++;c[2]--;
for(int i=2;i<=n;i++)if(b[i]>b[i+1])t[i]++,c[i]++,c[i+1]--;
for(int i=1;i<=n;i++)s[i]=s[i-1]+t[i];
for(int i=1;i<=n;i++)if(a[i]<a[i+1] && s[a[i+1]-1]-s[a[i]-1])c[a[i]]++,c[a[i+1]]--;
double ans=0;
for(int i=1;i<=n;i++){
c[i]+=c[i-1];
if(c[i])ans+=t[i];
else ans+=0.5;
}
printf("%.3lf\n",ans);
return 0;
}
bzoj 3244: [Noi2013]树的计数的更多相关文章
- 3244: [Noi2013]树的计数 - BZOJ
Description 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的BFS序也有可能相同, ...
- [UOJ#122][NOI2013]树的计数
[UOJ#122][NOI2013]树的计数 试题描述 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的 DFS 序以及 BFS 序.两棵不同的树的 DFS 序 ...
- BZOJ 1211: [HNOI2004]树的计数( 组合数学 )
知道prufer序列就能写...就是求个可重集的排列...先判掉奇怪的情况, 然后答案是(N-2)!/π(d[i]-1)! -------------------------------------- ...
- bzoj 1211: [HNOI2004]树的计数 -- purfer序列
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MB Description 一个有n个结点的树,设它的结点分别为v1, v2, ...
- BZOJ3244 NOI2013树的计数(概率期望)
容易发现的一点是如果确定了每一层有哪些点,树的形态就确定了.问题变为划分bfs序. 考虑怎样划分是合法的.同一层的点在bfs序中出现顺序与dfs序中相同.对于dfs序中相邻两点依次设为x和y,y至多在 ...
- [BZOJ3244][NOI2013]树的计数
这题大家为什么都写O(NlogN)的算法呢?…… 让本蒟蒻来写一个O(N)的吧…… 首先还是对BFS序和DFS序重编号,记标好的DFS序为d[1..n].令pos[x]为x在d[]中出现的位置,即po ...
- [bzoj3244][noi2013]树的计数 题解
UPD: 那位神牛的题解更新了,在这里. ------------------------------------------------------------------------------- ...
- [bzoj3244] [洛谷P1232] [Noi2013] 树的计数
Description 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的BFS序也有可能相同, ...
- BZOJ 1211 HNOI2004 树的计数 Prufer序列
题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后 ...
随机推荐
- js计时功能
//个位秒加 function time4jia() { //分钟60为上限 所有加停止 if (sz(a('time1').innerHTML) == 6) { return; } var m4 = ...
- Django SNS 微博项目开发
1.功能需求 一个人可以follow很多人 一个用户如果发了新weibo会自动推送所有关注他的人 可以搜索.关注其它用户 可以分类关注 用户可以发weibo, 转发.收藏.@其它人 发微博时可选择公开 ...
- django模板(一)
模板(一) 实验简介 在前一章中,你可能已经注意到我们在例子视图中返回文本的方式有点特别. 也就是说,HTML被直接硬编码在 Python 代码之中. def current_datetime(req ...
- 关于collectionView和tableView的两种cell的出列方法的区别
相信好多人一定会对collectionView和tableView的两种cell出列方法有所疑问,下面以UICollection为例子进行举例说明 假设我们已经创建了一个collectionView, ...
- itchat 微信的使用
#coding=utf8 import itchat # 自动回复 # 封装好的装饰器,当接收到的消息是Text,即文字消息 @itchat.msg_register('Text') def text ...
- 【技巧】Java工程中的Debug信息分级输出接口
也许本文的标题你们没咋看懂.但是,本文将带大家领略输出调试的威力. 灵感来源 说到灵感,其实是源于笔者在修复服务器的ssh故障时的一个发现. 这个学期初,同袍(容我来一波广告产品页面,同袍官网)原服务 ...
- OptaPlanner - 把example运行起来(运行并浅析Cloud balancing)
经过上面篇长篇大论的理论之后,在开始讲解Optaplanner相关基本概念及用法之前,我们先把他们提供的示例运行起来,好先让大家看看它是如何工作的.OptaPlanner的优点不仅仅是提供详细丰富的文 ...
- SQL常用语句,随时用随时更新
更多详细说明文档查询 http://www.postgres.cn/docs/9.5/infoschema-columns.html 1.1通过表名查询表的属性 SELECT * FROM sys.s ...
- Junit 4 测试中使用定时任务操作
难度:测试中执行线程操作 package com.hfepc.job.dataCollection.test; import java.util.Date; import java.util.List ...
- ExtJs6级联combo的实现
父类获取子类进行操作 { xtype: 'combo', store: Common.Dic.getDicData("IMAGE_BIG_TYPE") , multiSelect: ...