D Tree

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)
Total Submission(s): 3876    Accepted Submission(s): 743

Problem Description
There is a skyscraping tree standing on the playground of Nanjing University of Science and Technology. On each branch of the tree is an integer (The tree can be treated as a connected graph with N vertices, while each branch can be treated as a vertex). Today the students under the tree are considering a problem: Can we find such a chain on the tree so that the multiplication of all integers on the chain (mod 106 + 3) equals to K?
Can you help them in solving this problem?
 
Input
There are several test cases, please process till EOF.
Each test case starts with a line containing two integers N(1 <= N <= 105) and K(0 <=K < 106 + 3). The following line contains n numbers vi(1 <= vi < 106 + 3), where vi indicates the integer on vertex i. Then follows N - 1 lines. Each line contains two integers x and y, representing an undirected edge between vertex x and vertex y.
 
Output
For each test case, print a single line containing two integers a and b (where a < b), representing the two endpoints of the chain. If multiply solutions exist, please print the lexicographically smallest one. In case no solution exists, print “No solution”(without quotes) instead.
For more information, please refer to the Sample Output below.
 
Sample Input
5 60
2 5 2 3 3
1 2
1 3
2 4
2 5
5 2
2 5 2 3 3
1 2
1 3
2 4
2 5
 
Sample Output
3 4
No solution
/*
hdu 4812 DTree (点分治) problem:
求最小的点对使 u->v的点权的乘积%mod=limit. solve:
每次求过当前树根节点的情况. 每次可以计算出 一点到当前根节点的情况temp,所以只需要找出其它子树中是否有limit/temp
因为有取余,所以先预处理出所有的逆元. hhh-2016-08-23 10:52:26
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <math.h>
#include <map>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define key_val ch[ch[root][1]][0]
#define inf 0x3FFFFFFFFFFFFFFFLL
#define mod 1000003
using namespace std;
const int maxn = 100010;
ll val[maxn],d[maxn],limit;
int head[maxn];
int n,k,s[maxn],f[maxn],root;
int Size,tot;
bool vis[maxn];
vector<ll> ta; struct node
{
int to,w,next;
}edge[maxn<<2]; void add_edge(int u,int v)
{
edge[tot].to=v,edge[tot].next=head[u],head[u]=tot++;
} void get_root(int now,int fa)
{
int v;
s[now] = 1,f[now] = 0;
for(int i = head[now];~i;i = edge[i].next)
{
if( (v=edge[i].to) == fa || vis[v])
continue;
get_root(v,now);
s[now] += s[v];
f[now] = max(f[now],s[v]);
}
f[now] = max(f[now],Size - s[now]);
if(f[now] < f[root]) root = now;
}
int id[maxn];
int idnum;
void dfs(int now,int fa)
{
int v;
ta.push_back(d[now]);
id[idnum++] = now;
s[now] = 1;
for(int i = head[now];~i;i = edge[i].next)
{
if( (v=edge[i].to) == fa || vis[v])
continue;
d[v] = (d[now] * val[v])%mod;
dfs(v,now);
s[now] += s[v];
}
}
int flag[mod + 10];
int mp[mod + 10];
int cur = 0;
ll ni[mod+10];
int ans[2];
void to_ans(int a, int b)
{ if (a > b) swap(a,b);
if (ans[0] == -1 || ans[0] > a) ans[0] = a, ans[1] = b;
else if (ans[0] == a && ans[1] > b) ans[1] = b;
// cout <<"a:"<<ans[0] << " b:" <<ans[1] <<endl;
} void work(int now,int cnt)
{
f[0] = Size = cnt;
get_root(now,root = 0);
int v;
vis[root] = 1;
for(int i = head[root];~i;i = edge[i].next)
{
if(!vis[v = edge[i].to])
{
ta.clear(),d[v] = val[v],idnum = 0;
dfs(v,0); for(int j = 0; j < ta.size();j++)
{
if(val[root]*ta[j] % mod == limit && root != id[j])
to_ans(root,id[j]);
ll t = (ll)limit*ni[val[root]*ta[j]%mod]%mod;
if(flag[t] != cur)
continue;
if(mp[t] == id[j])
continue;
to_ans(mp[t],id[j]);
}
for(int j = 0; j < ta.size(); j++)
{
int t = ta[j];
if(flag[t] != cur || mp[t] > id[j]) mp[t] = id[j],flag[t] = cur;
}
}
}
cur ++;
for(int i = head[root];~i;i = edge[i].next)
{
if(vis[edge[i].to])
continue;
work(edge[i].to,s[edge[i].to]);
}
} ll egcd(ll a,ll b, ll &x, ll &y)
{
ll temp,tempx;
if (b == 0)
{
x = 1;
y = 0;
return a;
}
temp = egcd(b,a % b, x, y);
tempx = x;
x = y;
y = tempx - a / b * y;
return temp;
} int main()
{ ll y;
for (int i = 0; i < mod; i++)
{
egcd(i*1ll, mod*1ll, ni[i], y);
ni[i] %= mod, ni[i] = (ni[i]+mod)%mod;
}
while(scanf("%d%I64d",&n,&limit)!=EOF)
{
if(!n && !limit)
break;
clr(vis,0),clr(flag,0);
clr(head,-1),tot = 0;
ans[0] = ans[1] = -1;
int a,b;
for(int i = 1; i <= n; i++)
{
scanf("%I64d",&val[i]);
}
for(int i = 1; i < n; i++)
{
scanf("%d%d",&a,&b);
add_edge(a,b);
add_edge(b,a);
}
cur = 1;
work(1,n);
if(ans[0] == -1)
printf("No solution\n");
else
printf("%d %d\n",ans[0],ans[1]);
}
return 0;
}

  

hdu 4812 DTree (点分治)的更多相关文章

  1. HDU 4812 D Tree

    HDU 4812 思路: 点分治 先预处理好1e6 + 3以内到逆元 然后用map 映射以分治点为起点的链的值a 成他的下标 u 然后暴力跑出以分治点儿子为起点的链的值b,然后在map里查找inv[b ...

  2. hdu 5830 FFT + cdq分治

    Shell Necklace Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  3. HDU - 4812 D Tree 点分治

    http://acm.hdu.edu.cn/showproblem.php?pid=4812 题意:有一棵树,每个点有一个权值要求找最小的一对点,路径上的乘积mod1e6+3为k 题解:点分治,挨个把 ...

  4. HDU 4812 D Tree 树分治+逆元处理

    D Tree Problem Description   There is a skyscraping tree standing on the playground of Nanjing Unive ...

  5. hdu 4812 D Tree(树的点分治)

    D Tree Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others) Total ...

  6. HDU 4812 D Tree 树分治

    题意: 给出一棵树,每个节点上有个权值.要找到一对字典序最小的点对\((u, v)(u < v)\),使得路径\(u \to v\)上所有节点权值的乘积模\(10^6 + 3\)的值为\(k\) ...

  7. HDU 4812 (点分治)

    题目:https://vjudge.net/contest/307753#problem/E 题意:给你一颗树,树上每个点都有个权值,现在问你是否存在 一条路径的乘积 mod 1e6+3  等于 k的 ...

  8. E - D Tree HDU - 4812 点分治+逆元

    这道题非常巧妙!!! 我们进行点分治的时候,算出当前子节点的所有子树中的节点,到当前节点节点的儿子节点的距离,如下图意思就是 当前节点的红色节点,我们要求出红色节点的儿子节点绿色节点,所有绿色的子树节 ...

  9. HDU 4812:D Tree(树上点分治+逆元)

    题目链接 题意 给一棵树,每个点上有一个权值,问是否存在一条路径(不能是单个点)上的所有点相乘并对1e6+3取模等于k,输出路径的两个端点.如果存在多组答案,输出字典序小的点对. 思路 首先,(a * ...

随机推荐

  1. C语言的第0次作业

    你认为大学的学习生活.同学关系.师生关系应该是怎样? 1.我觉得大学生活应该充实而富有意义,不荒废学业,合理分配时间,让自己有一技之长,与时代接轨. 2.同学之间应该顺其自然的相处,不做作,不矫情,真 ...

  2. 201621123060《JAVA程序设计》第一周学习总结

    1.本周学习总结 1.讲述了JAVA的发展史,关于JDK.JRE.JVM的联系和区别 2.JDK是用JAVA开发工具.做项目的关键.JRE是JAVA的运行环境(JAVA也是JAVA语言开发的).JVM ...

  3. 第十一条:谨慎的覆盖clone()方法

    一个类要想实现克隆,需要实现Cloneable接口,表明这个类的对象具有克隆的功能. Cloneable接口是一个mixin接口,它里面并没有任何的抽象方法,类似的接口有Serializable接口, ...

  4. 2017-2018-1 我爱学Java 第六七周 作业

    团队六七周作业 完善版需求规格说明书 制定团队编码规范 数据库设计 后端架构设计 TODOList 参考资料 完善版需求规格说明书 <需求规格说明书>初稿不足之处: 1.开发工具写错 2. ...

  5. sys模块的使用

    import sys,time ''' if sys.argv[1]=='sleepy': print('nongsi') else: print('....')''' #进度条 for i in r ...

  6. SourceTree 实现 git flow 流程

    为什么使用 git 和 git flow,这篇文章 深入理解学习Git工作流 的内容相信能够给你一个完整的答案. 我们以使用SVN的工作流来使用git有什么不妥? git 方便的branch在哪里,团 ...

  7. 不看就亏了:DELL EqualLogic PS6100详解及数据恢办法

    DELL EqualLogic PS6100采用虚拟ISCSI SAN阵列,为远程或分支办公室.部门和中小企业存储部署带来企业级功能.智能化.自动化和可靠性,支持VMware.Solaris.Linu ...

  8. 延迟确认和Nagle算法

    前篇文章介绍了三次握手和四次挥手,了解了TCP是如何建立和断开连接的,文末还提到了抓包挥手时的一个“异常”现象,当时无法解释,特地查了资料,知道了数据传输中的延迟确认策略. 何谓延迟确认策略? WIK ...

  9. Spring AOP AspectJ

    本文讲述使用AspectJ框架实现Spring AOP. 再重复一下Spring AOP中的三个概念, Advice:向程序内部注入的代码. Pointcut:注入Advice的位置,切入点,一般为某 ...

  10. 【原创】自己动手实现JDK动态代理

    项目结构如下图所示,maven项目 1.JDK动态代理 先来一段jdk动态代理的demo, 首先创建一个接口,Person package bean; public interface Person ...