D Tree

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)
Total Submission(s): 3876    Accepted Submission(s): 743

Problem Description
There is a skyscraping tree standing on the playground of Nanjing University of Science and Technology. On each branch of the tree is an integer (The tree can be treated as a connected graph with N vertices, while each branch can be treated as a vertex). Today the students under the tree are considering a problem: Can we find such a chain on the tree so that the multiplication of all integers on the chain (mod 106 + 3) equals to K?
Can you help them in solving this problem?
 
Input
There are several test cases, please process till EOF.
Each test case starts with a line containing two integers N(1 <= N <= 105) and K(0 <=K < 106 + 3). The following line contains n numbers vi(1 <= vi < 106 + 3), where vi indicates the integer on vertex i. Then follows N - 1 lines. Each line contains two integers x and y, representing an undirected edge between vertex x and vertex y.
 
Output
For each test case, print a single line containing two integers a and b (where a < b), representing the two endpoints of the chain. If multiply solutions exist, please print the lexicographically smallest one. In case no solution exists, print “No solution”(without quotes) instead.
For more information, please refer to the Sample Output below.
 
Sample Input
5 60
2 5 2 3 3
1 2
1 3
2 4
2 5
5 2
2 5 2 3 3
1 2
1 3
2 4
2 5
 
Sample Output
3 4
No solution
/*
hdu 4812 DTree (点分治) problem:
求最小的点对使 u->v的点权的乘积%mod=limit. solve:
每次求过当前树根节点的情况. 每次可以计算出 一点到当前根节点的情况temp,所以只需要找出其它子树中是否有limit/temp
因为有取余,所以先预处理出所有的逆元. hhh-2016-08-23 10:52:26
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <math.h>
#include <map>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define key_val ch[ch[root][1]][0]
#define inf 0x3FFFFFFFFFFFFFFFLL
#define mod 1000003
using namespace std;
const int maxn = 100010;
ll val[maxn],d[maxn],limit;
int head[maxn];
int n,k,s[maxn],f[maxn],root;
int Size,tot;
bool vis[maxn];
vector<ll> ta; struct node
{
int to,w,next;
}edge[maxn<<2]; void add_edge(int u,int v)
{
edge[tot].to=v,edge[tot].next=head[u],head[u]=tot++;
} void get_root(int now,int fa)
{
int v;
s[now] = 1,f[now] = 0;
for(int i = head[now];~i;i = edge[i].next)
{
if( (v=edge[i].to) == fa || vis[v])
continue;
get_root(v,now);
s[now] += s[v];
f[now] = max(f[now],s[v]);
}
f[now] = max(f[now],Size - s[now]);
if(f[now] < f[root]) root = now;
}
int id[maxn];
int idnum;
void dfs(int now,int fa)
{
int v;
ta.push_back(d[now]);
id[idnum++] = now;
s[now] = 1;
for(int i = head[now];~i;i = edge[i].next)
{
if( (v=edge[i].to) == fa || vis[v])
continue;
d[v] = (d[now] * val[v])%mod;
dfs(v,now);
s[now] += s[v];
}
}
int flag[mod + 10];
int mp[mod + 10];
int cur = 0;
ll ni[mod+10];
int ans[2];
void to_ans(int a, int b)
{ if (a > b) swap(a,b);
if (ans[0] == -1 || ans[0] > a) ans[0] = a, ans[1] = b;
else if (ans[0] == a && ans[1] > b) ans[1] = b;
// cout <<"a:"<<ans[0] << " b:" <<ans[1] <<endl;
} void work(int now,int cnt)
{
f[0] = Size = cnt;
get_root(now,root = 0);
int v;
vis[root] = 1;
for(int i = head[root];~i;i = edge[i].next)
{
if(!vis[v = edge[i].to])
{
ta.clear(),d[v] = val[v],idnum = 0;
dfs(v,0); for(int j = 0; j < ta.size();j++)
{
if(val[root]*ta[j] % mod == limit && root != id[j])
to_ans(root,id[j]);
ll t = (ll)limit*ni[val[root]*ta[j]%mod]%mod;
if(flag[t] != cur)
continue;
if(mp[t] == id[j])
continue;
to_ans(mp[t],id[j]);
}
for(int j = 0; j < ta.size(); j++)
{
int t = ta[j];
if(flag[t] != cur || mp[t] > id[j]) mp[t] = id[j],flag[t] = cur;
}
}
}
cur ++;
for(int i = head[root];~i;i = edge[i].next)
{
if(vis[edge[i].to])
continue;
work(edge[i].to,s[edge[i].to]);
}
} ll egcd(ll a,ll b, ll &x, ll &y)
{
ll temp,tempx;
if (b == 0)
{
x = 1;
y = 0;
return a;
}
temp = egcd(b,a % b, x, y);
tempx = x;
x = y;
y = tempx - a / b * y;
return temp;
} int main()
{ ll y;
for (int i = 0; i < mod; i++)
{
egcd(i*1ll, mod*1ll, ni[i], y);
ni[i] %= mod, ni[i] = (ni[i]+mod)%mod;
}
while(scanf("%d%I64d",&n,&limit)!=EOF)
{
if(!n && !limit)
break;
clr(vis,0),clr(flag,0);
clr(head,-1),tot = 0;
ans[0] = ans[1] = -1;
int a,b;
for(int i = 1; i <= n; i++)
{
scanf("%I64d",&val[i]);
}
for(int i = 1; i < n; i++)
{
scanf("%d%d",&a,&b);
add_edge(a,b);
add_edge(b,a);
}
cur = 1;
work(1,n);
if(ans[0] == -1)
printf("No solution\n");
else
printf("%d %d\n",ans[0],ans[1]);
}
return 0;
}

  

hdu 4812 DTree (点分治)的更多相关文章

  1. HDU 4812 D Tree

    HDU 4812 思路: 点分治 先预处理好1e6 + 3以内到逆元 然后用map 映射以分治点为起点的链的值a 成他的下标 u 然后暴力跑出以分治点儿子为起点的链的值b,然后在map里查找inv[b ...

  2. hdu 5830 FFT + cdq分治

    Shell Necklace Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  3. HDU - 4812 D Tree 点分治

    http://acm.hdu.edu.cn/showproblem.php?pid=4812 题意:有一棵树,每个点有一个权值要求找最小的一对点,路径上的乘积mod1e6+3为k 题解:点分治,挨个把 ...

  4. HDU 4812 D Tree 树分治+逆元处理

    D Tree Problem Description   There is a skyscraping tree standing on the playground of Nanjing Unive ...

  5. hdu 4812 D Tree(树的点分治)

    D Tree Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others) Total ...

  6. HDU 4812 D Tree 树分治

    题意: 给出一棵树,每个节点上有个权值.要找到一对字典序最小的点对\((u, v)(u < v)\),使得路径\(u \to v\)上所有节点权值的乘积模\(10^6 + 3\)的值为\(k\) ...

  7. HDU 4812 (点分治)

    题目:https://vjudge.net/contest/307753#problem/E 题意:给你一颗树,树上每个点都有个权值,现在问你是否存在 一条路径的乘积 mod 1e6+3  等于 k的 ...

  8. E - D Tree HDU - 4812 点分治+逆元

    这道题非常巧妙!!! 我们进行点分治的时候,算出当前子节点的所有子树中的节点,到当前节点节点的儿子节点的距离,如下图意思就是 当前节点的红色节点,我们要求出红色节点的儿子节点绿色节点,所有绿色的子树节 ...

  9. HDU 4812:D Tree(树上点分治+逆元)

    题目链接 题意 给一棵树,每个点上有一个权值,问是否存在一条路径(不能是单个点)上的所有点相乘并对1e6+3取模等于k,输出路径的两个端点.如果存在多组答案,输出字典序小的点对. 思路 首先,(a * ...

随机推荐

  1. animation & @keyframes 实现loading效果

    效果图截图如下: 直接上代码: html <!DOCTYPE html> <html> <head> <meta charset="utf-8&qu ...

  2. Spark性能优化总结

    1. 避免重复加载RDD 比如一份从HDFS中加载的数据 val rdd1 = sc.textFile("hdfs://url:port/test.txt"),这个test.txt ...

  3. Docker_部署jenkins(dockerfile实现)

    docker+jenkins开始合体! 我用的是ubuntu14.04的基础镜像,具体的这里不做赘述. 我在/tmp/目录下建了一个Dockerfile文件: touch Dockerfile vi ...

  4. thinkphp框架调用类不存在的方法

    thinkphp框架调用类不存在的方法调用类不存在的方法,不会报错,但是也不会执行,这是根据tp框架里面的一个魔术方法,框架里面一共才十几个魔术方法

  5. href的理解

    您搜索的项目暂未上线,可直接<a style="color: #ff0000;" onclick="onlineTalk();" href="j ...

  6. python 中 reduce 函数的使用

    reduce()函数也是Python内置的一个高阶函数. reduce()函数接收的参数和 map()类似,一个函数 f,一个list,但行为和 map()不同,reduce()传入的函数 f 必须接 ...

  7. Postgres中postmaster代码解析(上)

    之前我的一些文章都是在说Postgres的一些查询相关的代码.但是对于Postgres服务端是如何启动,后台进程是如何加载,服务端在哪里以及如何监听客户端的连接都没有一个清晰的逻辑.那么今天我来说说P ...

  8. ABP CORE 框架入门视频教程《电话薄》基于 Asp.NET Core2.0 EF Core

    ABP框架简介 ABP是"ASP.NET Boilerplate Project (ASP.NET样板项目)"的简称. ASP.NET Boilerplate是一个用最佳实践和流行 ...

  9. JavaScript中Array数组的方法

    查找: indexOf.lastIndexOf 迭代:every.filter.forEach.map.somereduce.reduceRight 用法: /* 1 查找方法: * arr.inde ...

  10. [Luogu1342] 请柬 - 最短路模板

    Description 在电视时代,没有多少人观看戏剧表演.Malidinesia古董喜剧演员意识到这一事实,他们想宣传剧院,尤其是古色古香的喜剧片.他们已经打印请帖和所有必要的信息和计划.许多学生被 ...