Tozan and Gezan(x*y<a*b)
E - Tozan and Gezan
Time limit : 2sec / Memory limit : 256MB
Score : 700 points
Problem Statement
You are given sequences A and B consisting of non-negative integers. The lengths of both A and B are N, and the sums of the elements in A and B are equal. The i-th element in A is Ai, and the i-th element in B is Bi.
Tozan and Gezan repeats the following sequence of operations:
- If A and B are equal sequences, terminate the process.
- Otherwise, first Tozan chooses a positive element in A and decrease it by 1.
- Then, Gezan chooses a positive element in B and decrease it by 1.
- Then, give one candy to Takahashi, their pet.
Tozan wants the number of candies given to Takahashi until the process is terminated to be as large as possible, while Gezan wants it to be as small as possible. Find the number of candies given to Takahashi when both of them perform the operations optimally.
Constraints
- 1≤N≤2×105
- 0≤Ai,Bi≤109(1≤i≤N)
- The sums of the elements in A and B are equal.
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A1 B1
:
AN BN
Output
Print the number of candies given to Takahashi when both Tozan and Gezan perform the operations optimally.
Sample Input 1
2
1 2
3 2
Sample Output 1
2
When both Tozan and Gezan perform the operations optimally, the process will proceed as follows:
- Tozan decreases A1 by 1.
- Gezan decreases B1 by 1.
- One candy is given to Takahashi.
- Tozan decreases A2 by 1.
- Gezan decreases B1 by 1.
- One candy is given to Takahashi.
- As A and B are equal, the process is terminated.
Sample Input 2
3
8 3
0 1
4 8
Sample Output 2
9
Sample Input 3
1
1 1
Sample Output 3
0 题意:求满足条件x*y<a*b最多的组数,其中a,b已知。
题解:要满足<a*b,x,y中必定存在<sqrt(a*b)的数;
① 如果t2*t2==a*b,在满足a==b的条件下,因为是<a*b,所以t2*2—2,因为a,b被计算了两次;否则在t2*t2==a*b的各种情况中还存在a!=t2&&a!=b的情况,所以还要-1;
② 如果满足t2*t2为最后一组满足条件的数时,只需要-1,(重复计算了t2*t2);
③ 否则的话-2(即在分别为a和b的条件时的两种情况; AC代码:
//#include <bits/stdc++.h>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#define N 500005
#define mem(a,b) memset(a,b,sizeof(a))
#define IOS ios::sync_with_stdio(false)
#define INF 0x3f3f3f3f
#define MOD 998244353
#define Mod 1e9 + 7
template<typename T> inline T max(T a,T b,T c){
return max(a,max(b,c));
}
template<typename T> inline T min(T a,T b,T c){
return min(a,min(b,c));
}
template<typename T> inline T max(T a,T b,T c,T d){
return max(a,max(b,c,d));
}
template<typename T> inline T min(T a,T b,T c,T d){
return min(a,min(b,c,d));
}
const int dx[]={,,,-,,,-,,-};
const int dy[]={,,,,-,,-,-,};
typedef long long ll;
using namespace std;
int main(){
ll n,a,b;
scanf("%lld",&n);
for (int i=;i<=n;i++){
scanf("%lld%lld",&a,&b);
ll t1=a*b;
ll t2=sqrt(t1);
if (t2*t2==t1){
if (a==b) printf("%lld\n",t2*-);
else printf("%lld\n",t2*-);
}
else if (t2*(t2+)<t1) printf("%lld\n",t2*-);
else printf("%lld\n",t2*-);
}
return ;
}
Tozan and Gezan(x*y<a*b)的更多相关文章
- 给定n,求1/x + 1/y = 1/n (x<=y)的解数~hdu-1299~(分解素因子详解)
链接:https://www.nowcoder.com/acm/contest/90/F来源:牛客网 题目描述 给定n,求1/x + 1/y = 1/n (x<=y)的解数.(x.y.n均为正整 ...
- 青蛙的约会 扩展欧几里得 方程ax+by=c的整数解 一个跑道长为周长为L米,两只青蛙初始位置为x,y;(x!=y,同时逆时针运动,每一次运动分别为m,n米;问第几次运动后相遇,即在同一位置。
/** 题目:青蛙的约会 链接:https://vjudge.net/contest/154246#problem/R 题意:一个跑道长为周长为L米,两只青蛙初始位置为x,y:(x!=y,同时逆时针运 ...
- 省赛i题/求1~n内所有数对(x,y),满足最大公约数是质数的对数
求1~n内所有数对(x,y),gcd(x,y)=质数,的对数. 思路:用f[n]求出,含n的对数,最后用sum[n]求和. 对于gcd(x,y)=a(设x<=y,a是质数),则必有gcd(x/a ...
- 省赛i题/求1~n内全部数对(x,y),满足最大公约数是质数的对数
求1~n内全部数对(x,y),gcd(x,y)=质数,的对数. 思路:用f[n]求出,含n的对数.最后用sum[n]求和. 对于gcd(x,y)=a(设x<=y,a是质数),则必有gcd(x/a ...
- X分钟速成Y (其中Y=Python3)
# 用井字符开头的是单行注释 """ 多行字符串用三个引号 包裹,也常被用来做多 行注释 """ ##################### ...
- 已知(x,y,z,yaw,pitch,roll)如何得到4*4的转换矩阵?
作者:Nicholas链接:https://www.zhihu.com/question/41514206/answer/104827395来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商 ...
- IOS 封装View的fram(X Y W H )
@interface UIView (Extension) @property (nonatomic, assign) CGFloat x; @property (nonatomic, assign) ...
- 最小二乘求解常数k使得kx=y(x,y为列向量)
直接求解法 取范数 \[ E(k)=\|kx-y\|^{2}\\ \] 构建最小二乘得出 \[ \arg \min (E(k))=k^2x^Tx+y^Ty-2x^Tyk \] 对k求导有 \[ 2x^ ...
- 中心极限定理(为什么y服从高斯分布)
因为每一条数据都服从IID原则: 根据中心极限定理,当数据增加的时候,样本均值的分布慢慢变成正态分布 不管分布式什么分布,累加起来都是高斯分布 As sum increases, sum of non ...
随机推荐
- Heavy Light Decomposition
Note 1.DFS1 mark all the depth mark fathers mark the heavy/light children mark the size of each subt ...
- tensorflow2使用中的一些问题
from tensorflow import keras import tensorflow as tf import numpy as np print(tf.__name__,tf.__versi ...
- a标签的一些特殊使用
<a href="tel:10086">10086</a> //点击后直接拨打10086 <a href="mailto:c1586@qq ...
- 放贷额度相关的ROI计算
违约模型得到概率估计, 将概率值划分5档, 每一档确定一个授信系数 新的授信 = 每月收入* 授信系数 - 老的授信 计算新增授信额度 计算余额损失
- JdbcRDD连接MySQL
(1)添加依赖 <dependencies> <dependency> <groupId>org.apache.spark</groupId> < ...
- linux版本neo4j安装配置教程
https://blog.csdn.net/weixin_44293236/article/details/89467489
- 史上最强maven配置详情
史上最强maven配置详情 优点 对第三方依赖库进行了统一的版本管理 统一了构建过程 统一了项目的目录结构 构建 清理 : mvn clear 编译 : mvn compile 测试 : mvn te ...
- Class<T> 泛型获取T的class
getClass().getGenericSuperclass()返回表示此 Class 所表示的实体(类.接口.基本类型或 void)的直接超类的 Type然后将其转换ParameterizedTy ...
- Q_Go1
Go语言的特点及优势 一.Go语言设计初衷(为什么设计Go语言?) 1.1.设计Go源是为了解决当时Google开发遇到的困难: 大量的C++代码,同时有引入了Java和Python 成千上万的工程师 ...
- 吴裕雄--天生自然python学习笔记:python 用pygame模块基本绘图
绘制几何图形是游戏包的基本功能,很多游戏角色都是由基本图形组合而成的 . 绘制矩形: pygame.draw.rect Pygam巳绘制矩形的语法为: 用基本绘图绘制一个人脸 用基本绘图功能绘制人脸 ...