E - Tozan and Gezan


Time limit : 2sec / Memory limit : 256MB

Score : 700 points

Problem Statement

You are given sequences A and B consisting of non-negative integers. The lengths of both A and B are N, and the sums of the elements in A and B are equal. The i-th element in A is Ai, and the i-th element in B is Bi.

Tozan and Gezan repeats the following sequence of operations:

  • If A and B are equal sequences, terminate the process.
  • Otherwise, first Tozan chooses a positive element in A and decrease it by 1.
  • Then, Gezan chooses a positive element in B and decrease it by 1.
  • Then, give one candy to Takahashi, their pet.

Tozan wants the number of candies given to Takahashi until the process is terminated to be as large as possible, while Gezan wants it to be as small as possible. Find the number of candies given to Takahashi when both of them perform the operations optimally.

Constraints

  • 1≤N≤2×105
  • 0≤Ai,Bi≤109(1≤iN)
  • The sums of the elements in A and B are equal.
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

N
A1 B1
:
AN BN

Output

Print the number of candies given to Takahashi when both Tozan and Gezan perform the operations optimally.


Sample Input 1

Copy
2
1 2
3 2

Sample Output 1

Copy
2

When both Tozan and Gezan perform the operations optimally, the process will proceed as follows:

  • Tozan decreases A1 by 1.
  • Gezan decreases B1 by 1.
  • One candy is given to Takahashi.
  • Tozan decreases A2 by 1.
  • Gezan decreases B1 by 1.
  • One candy is given to Takahashi.
  • As A and B are equal, the process is terminated.

Sample Input 2

Copy
3
8 3
0 1
4 8

Sample Output 2

Copy
9

Sample Input 3

Copy
1
1 1

Sample Output 3

Copy
0

题意:求满足条件x*y<a*b最多的组数,其中a,b已知。
题解:要满足<a*b,x,y中必定存在<sqrt(a*b)的数;
① 如果t2*t2==a*b,在满足a==b的条件下,因为是<a*b,所以t2*2—2,因为a,b被计算了两次;否则在t2*t2==a*b的各种情况中还存在a!=t2&&a!=b的情况,所以还要-1;
② 如果满足t2*t2为最后一组满足条件的数时,只需要-1,(重复计算了t2*t2);
③ 否则的话-2(即在分别为a和b的条件时的两种情况; AC代码:
//#include    <bits/stdc++.h>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#define N 500005
#define mem(a,b) memset(a,b,sizeof(a))
#define IOS ios::sync_with_stdio(false)
#define INF 0x3f3f3f3f
#define MOD 998244353
#define Mod 1e9 + 7
template<typename T> inline T max(T a,T b,T c){
return max(a,max(b,c));
}
template<typename T> inline T min(T a,T b,T c){
return min(a,min(b,c));
}
template<typename T> inline T max(T a,T b,T c,T d){
return max(a,max(b,c,d));
}
template<typename T> inline T min(T a,T b,T c,T d){
return min(a,min(b,c,d));
}
const int dx[]={,,,-,,,-,,-};
const int dy[]={,,,,-,,-,-,};
typedef long long ll;
using namespace std;
int main(){
ll n,a,b;
scanf("%lld",&n);
for (int i=;i<=n;i++){
scanf("%lld%lld",&a,&b);
ll t1=a*b;
ll t2=sqrt(t1);
if (t2*t2==t1){
if (a==b) printf("%lld\n",t2*-);
else printf("%lld\n",t2*-);
}
else if (t2*(t2+)<t1) printf("%lld\n",t2*-);
else printf("%lld\n",t2*-);
}
return ;
}

Tozan and Gezan(x*y<a*b)的更多相关文章

  1. 给定n,求1/x + 1/y = 1/n (x<=y)的解数~hdu-1299~(分解素因子详解)

    链接:https://www.nowcoder.com/acm/contest/90/F来源:牛客网 题目描述 给定n,求1/x + 1/y = 1/n (x<=y)的解数.(x.y.n均为正整 ...

  2. 青蛙的约会 扩展欧几里得 方程ax+by=c的整数解 一个跑道长为周长为L米,两只青蛙初始位置为x,y;(x!=y,同时逆时针运动,每一次运动分别为m,n米;问第几次运动后相遇,即在同一位置。

    /** 题目:青蛙的约会 链接:https://vjudge.net/contest/154246#problem/R 题意:一个跑道长为周长为L米,两只青蛙初始位置为x,y:(x!=y,同时逆时针运 ...

  3. 省赛i题/求1~n内所有数对(x,y),满足最大公约数是质数的对数

    求1~n内所有数对(x,y),gcd(x,y)=质数,的对数. 思路:用f[n]求出,含n的对数,最后用sum[n]求和. 对于gcd(x,y)=a(设x<=y,a是质数),则必有gcd(x/a ...

  4. 省赛i题/求1~n内全部数对(x,y),满足最大公约数是质数的对数

    求1~n内全部数对(x,y),gcd(x,y)=质数,的对数. 思路:用f[n]求出,含n的对数.最后用sum[n]求和. 对于gcd(x,y)=a(设x<=y,a是质数),则必有gcd(x/a ...

  5. X分钟速成Y (其中Y=Python3)

    # 用井字符开头的是单行注释 """ 多行字符串用三个引号 包裹,也常被用来做多 行注释 """ ##################### ...

  6. 已知(x,y,z,yaw,pitch,roll)如何得到4*4的转换矩阵?

    作者:Nicholas链接:https://www.zhihu.com/question/41514206/answer/104827395来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商 ...

  7. IOS 封装View的fram(X Y W H )

    @interface UIView (Extension) @property (nonatomic, assign) CGFloat x; @property (nonatomic, assign) ...

  8. 最小二乘求解常数k使得kx=y(x,y为列向量)

    直接求解法 取范数 \[ E(k)=\|kx-y\|^{2}\\ \] 构建最小二乘得出 \[ \arg \min (E(k))=k^2x^Tx+y^Ty-2x^Tyk \] 对k求导有 \[ 2x^ ...

  9. 中心极限定理(为什么y服从高斯分布)

    因为每一条数据都服从IID原则: 根据中心极限定理,当数据增加的时候,样本均值的分布慢慢变成正态分布 不管分布式什么分布,累加起来都是高斯分布 As sum increases, sum of non ...

随机推荐

  1. c++语法(1)

    #include<iostream> #include<windows.h> using namespace std; class Parents { public: ; // ...

  2. More 'long-life' plastic bags being used

    1 1.1 roll out v. 推广,或实行 1.2 pilot v. 试行 n. 飞行员 1.3 bags for life 可重复使用的环保购物袋 2 2.1 How many times a ...

  3. [ZJOI2019]语言(树链剖分+动态开点线段树+启发式合并)

    首先,对于从每个点出发的路径,答案一定是过这个点的路径所覆盖的点数.然后可以做树上差分,对每个点记录路径产生总贡献,然后做一个树剖维护,对每个点维护一个动态开点线段树.最后再从根节点开始做一遍dfs, ...

  4. JavaWeb过滤器(Filter)

    参考:https://blog.csdn.net/yuzhiqiang_1993/article/details/81288912 原理: 一般实现流程: 1.新建一个类,实现Filter接口2.实现 ...

  5. npm 切换成淘宝镜像

    npm install nrm -g nrm use taobao

  6. ionic3 打开相机与相册,并实现图片上传

    安装依赖项等: $ ionic cordova plugin add cordova-plugin-camera $ npm install --save @ionic-native/camera 创 ...

  7. 3)利用Build.php自动创建目录和文件

    (1)首先做法参照: thinkphp5的手册的  命令行--->自动生成目录结构 或者看云的资料:https://www.kancloud.cn/manual/thinkphp5/118021 ...

  8. 85)PHP,PHP处理mysql的函数种类

    首先,就我知道的,一共有三种: 自己用过的是mysql和mysqli,还没用过PDO_mysql 有时,随着我们的各种东西版本的更新,会遇到某一个扩展用不了的情形,所以,就有了编写完成相同功能的使用不 ...

  9. Halcon算子含义

    1.1 Gaussian-Mixture-Models 1.add_sample_class_gmm 功能:把一个训练样本添加到一个高斯混合模型的训练数据上. 2.classify_class_gmm ...

  10. Jump Game (Medium)

    主要有两种思路: 一. 本题只需要判断能否到达最后一个数,那么可以采用贪心策略,到达某个位置i后,在直接在这个位置的基础上走nums[i]步,主要保证能一直前进,就能达到终点: 那么,什么时候才不能一 ...