目标

在本章中,我们将了解ORB的基础知识

理论

作为OpenCV的狂热者,关于ORB的最重要的事情是它来自“ OpenCV Labs”。该算法由Ethan Rublee,Vincent Rabaud,Kurt Konolige和Gary R. Bradski在其论文《ORB:SIFT或SURF的有效替代方案》中提出。2011年,正如标题所述,它是计算中SIFT和SURF的良好替代方案成本,匹配性能以及主要是专利。是的,SIFT和SURF已获得专利,你应该为其使用付费。但是ORB不是!!!

ORB基本上是FAST关键点检测器和Brief描述符的融合,并进行了许多修改以增强性能。首先,它使用FAST查找关键点,然后应用Harris角测度在其中找到前N个点。它还使用金字塔生成多尺度特征。但是一个问题是,FAST无法计算方向。那么旋转不变性呢?作者提出以下修改。

它计算角点位于中心的贴片的强度加权质心。从此角点到质心的矢量方向确定了方向。为了改善旋转不变性,使用x和y计算矩,它们应该在半径rrr的圆形区域中,其中rrr是斑块的大小。

现在,对于描述符,ORB使用Brief描述符。但是我们已经看到,BRIEF的旋转性能很差。因此,ORB所做的就是根据关键点的方向“引导” BRIEF。对于位置(xi,yi)(x_i,y_i)(xi​,yi​)上n个二进制测试的任何特征集,定义一个2×n2×n2×n矩阵S,其中包含这些像素的坐标。然后使用面片的方向θθθ,找到其旋转矩阵并旋转SSS以获得转向(旋转)版本SθS_θSθ​。

ORB将角度离散化为2π30\frac{2π}{30}302π​(12度)的增量,并构造了预先计算的Brief模式的查找表。只要关键点方向θθθ在各个视图中一致,就将使用正确的点集SθS_θSθ​来计算其描述符。

BRIEF具有一个重要的特性,即每个位特征具有较大的方差,且均值接近0.5。但是,一旦沿关键点方向定向,它就会失去此属性,变得更加分散。高方差使功能更具区分性,因为它对输入的响应不同。另一个理想的特性是使测试不相关,因为从那时起每个测试都会对结果有所贡献。为了解决所有这些问题,ORB在所有可能的二进制测试中进行贪婪搜索,以找到方差高且均值接近0.5且不相关的测试。结果称为rBRIEF。

对于描述符匹配,使用了对传统LSH进行改进的多探针LSH。该论文说,ORB比SURF快得多,而SIFT和ORB描述符比SURF更好。在全景拼接等低功耗设备中,ORB是一个不错的选择。

OpenCV中的ORB

与往常一样,我们必须使用函数cv.ORB()或使用feature2d通用接口来创建ORB对象。它具有许多可选参数。最有用的是nFeatures,它表示要保留的最大特征数(默认为500),scoreType表示是对特征进行排名的Harris分数还是FAST分数(默认为Harris分数)等。另一个参数WTA_K决定点数产生定向的BRIEF描述符的每个元素。默认情况下为两个,即一次选择两个点。在这种情况下,为了匹配,将使用NORM_HAMMING距离。如果WTA_K为3或4,则需要3或4个点来生成Brief描述符,则匹配距离由NORM_HAMMING2定义。

下面是显示ORB用法的简单代码。

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('simple.jpg',0)
# 初始化ORB检测器
orb = cv.ORB_create()
# 用ORB寻找关键点
kp = orb.detect(img,None)
# 用ORB计算描述符
kp, des = orb.compute(img, kp)
# 仅绘制关键点的位置,而不绘制大小和方向
img2 = cv.drawKeypoints(img, kp, None, color=(0,255,0), flags=0)
plt.imshow(img2), plt.show()

查看以下结果:

ORB特征匹配,我们将在另一章中进行。

附加资源

  1. Ethan Rublee, Vincent Rabaud, Kurt Konolige, Gary R. Bradski: ORB: An efficient alternative to SIFT or SURF. ICCV 2011: 2564-2571.

欢迎关注磐创博客资源汇总站:

http://docs.panchuang.net/

欢迎关注PyTorch官方中文教程站:

http://pytorch.panchuang.net/

OpenCV中文官方文档:

http://woshicver.com/

OpenCV-Python ORB(面向快速和旋转的BRIEF) | 四十三的更多相关文章

  1. Win7 64bit+Anaconda(3-5.0.1,Python3.6)+Pycharm(community-2017.3.3)+OpenCV(python‑3.4.0‑cp36‑cp36m)(转载)

    Anaconda(3-5.0.1,Python3.6)下载链接:https://pan.baidu.com/s/1bqFwLMB 密码:37ih Pycharm(community-2017.3.3) ...

  2. OpenCV Python教程(3、直方图的计算与显示)

    转载请详细注明原作者及出处,谢谢! 本篇文章介绍如何用OpenCV Python来计算直方图,并简略介绍用NumPy和Matplotlib计算和绘制直方图 直方图的背景知识.用途什么的就直接略过去了. ...

  3. 使用 python -m SimpleHTTPServer 快速搭建http服务

    摘要: 在 Linux 服务器上或安装了 Python 的机器上,可以使用 nohup python -m SimpleHTTPServer [port] & 快速搭建一个http服务. 在 ...

  4. OpenCV + python 实现人脸检测(基于照片和视频进行检测)

    OpenCV + python 实现人脸检测(基于照片和视频进行检测) Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征 ...

  5. opencv+python视频实时质心显示

    利用opencv+python实现以下功能: 1)获取实时视频,分解帧频: 2)将视频做二值化处理: 3) 将视频做滤波处理(去除噪点,获取准确轮廓个数): 4)识别图像轮廓: 5)计算质心: 6)描 ...

  6. Erlang/Elixir: 使用 OpenCV, Python 搭建图片缩略图服务器

    这篇文章是在OSX上测试和运行的的, Ubuntu下的安装和配置请移步到这里 应用程序进程树, 默认 Poolboy 中初始化10个用于处理图片的 Python 工作进程(Worker) 首先安装Op ...

  7. opencv python实用操作

    画多边形 fillConvexPloy与fillConvexPloy的区别 fillConvexPloy 用来画单个凸多边形: 如果点集的连线不是凹多边形,则会找一个最小的凸多边形把该凹多边形包住画出 ...

  8. 解决Windows Server 2012 R2 Datacenter云服务器无法运行opencv python程序的问题

    写了个基于opencv的python程序,pyinstaller 32位机打包后在win7/win10 32/64正常运行,在Windows Server 2012 R2 Datacenter云服务器 ...

  9. 分享《Python 游戏编程快速上手(第3版)》高清中文版PDF+高清英文版PDF+源代码

    通过编写一个个小巧.有趣的游戏来学习Python,通过实例来解释编程的原理的方式.14个游戏程序和示例,介绍了Python基础知识.数据类型.函数.流程控制.程序调试.流程图设计.字符串操作.列表和字 ...

随机推荐

  1. IP不是万能药 为何有蜘蛛侠等大片的索尼要放弃电影

    ​ 为何有蜘蛛侠等大片的索尼要放弃电影"> 近年来,国内狂炒"IP"这一概念,比如动漫.网络文学.小说.游戏等,甚至围绕IP制造出内容矩阵.从一个IP延伸至多个领域 ...

  2. CSS——NO.9(颜色值和长度值)

    */ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...

  3. Java和C++引用的区别

    Java的引用实际上是对指针的一个封装. C++的引用是变量的一个别名. Java的定义出来的变量(除了基本类型)其实就是一个引用,指向真正的对象. C++可以通过将引用传入函数,在函数内修改所引用的 ...

  4. DSO 运行 —— dso_ros + Android 手机摄像头

    转载请注明出处,谢谢 原创作者:Mingrui 原创链接:https://www.cnblogs.com/MingruiYu/p/12425855.html 本文要点: dso 配置安装 dso 离线 ...

  5. webpack从0到1超详细超基础学习教程

    概念 自己是一个一听到webpack就头大,看着一堆不知道那是什么玩意的东西总觉得自己做好前端就行了,但是在使用vue-cli的时候总觉得要改其中的一些东西进行项目初始化的时候能够更好使用!所以想要根 ...

  6. 【原创】(四)Linux进程调度-组调度及带宽控制

    背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: Kernel版本: ...

  7. Lambda 语法

    1.java8 Lambda表达式语法简介 (此处需要使用jdk1.8或其以上版本) Lambd表达式分为左右两侧 * 左侧:Lambda 表达式的参数列表 * 右侧:Lambda 表达式中所需要执行 ...

  8. ES6的Proxy

    最近在Javascript的设计编程中,用到的那个单例模式,感觉就类似一种代理的思想[其实就是缓存的一种机制],单例模式就是: function getSingle(fn){ var result; ...

  9. .NET CORE之Authentication

    这篇文章以实现一个Basic认证来了解下在 .NET CORE 下面如何去实现认证. 首先可以肯定的是认证实现是基于 Middlerware 管道实现的,官方源码地址:https://github.c ...

  10. 第一篇:解析Linux是什么?能干什么?它的应用领域!

    不得不说的前言(不看完睡觉会尿床):饿货们~!你说你们上学都学了点啥?这不懂那也不懂,快毕业了啥也不会.专业课程不学好毕业了也找不到好工作.爸妈给你养大,投资了多少钱.你毕业后随便找了个什么鸡毛工作开 ...