1.  
  2.  

学习率是一个控制每次更新模型权重时响应估计误差而调整模型程度的超参数。学习率选取是一项具有挑战性的工作,学习率设置的非常小可能导致训练过程过长甚至训练进程被卡住,而设置的非常大可能会导致过快学习到次优的权重集合或者训练过程不稳定。

迁移学习

我们使用迁移学习将训练好的机器学习模型应用于不同但相关的任务中。这在深度学习这种使用层级链接的神经网络中非常有效。特别是在计算机视觉任务中,这些网络中的前几层倾向于学习较简单的特征。例如:边缘、梯度特征等。

这是一种在计算机视觉任务中被证实过可以产生更好结果的成熟方法。大多数预训练的模型(Resnet,VGG,Inception等)都是在ImageNet上进行训练的,并且根据实际任务中所用数据与ImageNet数据的相似性,这些预训练得到的权重需要或多或少地改变。

在fast.ai课程中,Jeremy Howard探讨了迁移学习的不同学习率策略以提高模型在速度和准确性方面的表现。

  1. 差分学习(Differential learning)

差分学习提出的动机来自这样一个事实,即在对预训练模型进行微调时,更靠近输入的层更可能学习更多的简单特征。因此,我们不想改变这些层的权重,而是更大程度上修改更深层的权重从而适应目标任务/数据。

“差分学习率”是指在网络的不同部分使用不同的学习率,初始层的学习率较低,后几层的学习率逐渐提高。

使用差分学习率的CNN样例

在Keras中实现差分学习率

为了在Keras中实现差异学习,我们需要修改优化器源代码。这里以Adam优化期为例,kears中Adam实现源代码如下:

  1. class Adam(Optimizer): """Adam optimizer. Default parameters follow those provided in the original paper. # Arguments lr: float >= 0. Learning rate. beta_1: float, 0 < beta < 1. Generally close to 1. beta_2: float, 0 < beta < 1. Generally close to 1. epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`. decay: float >= 0. Learning rate decay over each update. amsgrad: boolean. Whether to apply the AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and Beyond". """ def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0., amsgrad=False, **kwargs): super(Adam, self).__init__(**kwargs) with K.name_scope(self.__class__.__name__): self.iterations = K.variable(0, dtype='int64', name='iterations') self.lr = K.variable(lr, name='lr') self.beta_1 = K.variable(beta_1, name='beta_1') self.beta_2 = K.variable(beta_2, name='beta_2') self.decay = K.variable(decay, name='decay') if epsilon is None: epsilon = K.epsilon() self.epsilon = epsilon self.initial_decay = decay self.amsgrad = amsgrad @interfaces.legacy_get_updates_support def get_updates(self, loss, params): grads = self.get_gradients(loss, params) self.updates = [K.update_add(self.iterations, 1)] lr = self.lr if self.initial_decay > 0: lr = lr * (1. / (1. + self.decay * K.cast(self.iterations, K.dtype(self.decay)))) t = K.cast(self.iterations, K.floatx()) + 1 lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t))) ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] if self.amsgrad: vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] else: vhats = [K.zeros(1) for _ in params] self.weights = [self.iterations] + ms + vs + vhats for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats): m_t = (self.beta_1 * m) + (1. - self.beta_1) * g v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g) if self.amsgrad: vhat_t = K.maximum(vhat, v_t) p_t = p - lr_t * m_t / (K.sqrt(vhat_t) + self.epsilon) self.updates.append(K.update(vhat, vhat_t)) else: p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) self.updates.append(K.update(m, m_t)) self.updates.append(K.update(v, v_t)) new_p = p_t # Apply constraints. if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates def get_config(self): config = {'lr': float(K.get_value(self.lr)), 'beta_1': float(K.get_value(self.beta_1)), 'beta_2': float(K.get_value(self.beta_2)), 'decay': float(K.get_value(self.decay)), 'epsilon': self.epsilon, 'amsgrad': self.amsgrad} base_config = super(Adam, self).get_config() return dict(list(base_config.items()) + list(config.items()))
  2. """Adam optimizer.
  3. Default parameters follow those provided in the original paper.
  4. # Arguments
  5. lr: float >= 0. Learning rate.
  6. beta_1: float, 0 < beta < 1. Generally close to 1.
  7. beta_2: float, 0 < beta < 1. Generally close to 1.
  8. epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`.
  9. decay: float >= 0. Learning rate decay over each update.
  10. amsgrad: boolean. Whether to apply the AMSGrad variant of this
  11. algorithm from the paper "On the Convergence of Adam and
  12. Beyond".
  13. """
  14. def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
  15. epsilon=None, decay=0., amsgrad=False, **kwargs):
  16. super(Adam, self).__init__(**kwargs)
  17. with K.name_scope(self.__class__.__name__):
  18. self.iterations = K.variable(0, dtype='int64', name='iterations')
  19. self.lr = K.variable(lr, name='lr')
  20. self.beta_1 = K.variable(beta_1, name='beta_1')
  21. self.beta_2 = K.variable(beta_2, name='beta_2')
  22. self.decay = K.variable(decay, name='decay')
  23. if epsilon is None:
  24. epsilon = K.epsilon()
  25. self.epsilon = epsilon
  26. self.initial_decay = decay
  27. self.amsgrad = amsgrad
  28. @interfaces.legacy_get_updates_support
  29. def get_updates(self, loss, params):
  30. grads = self.get_gradients(loss, params)
  31. self.updates = [K.update_add(self.iterations, 1)]
  32. lr = self.lr
  33. if self.initial_decay > 0:
  34. lr = lr * (1. / (1. + self.decay * K.cast(self.iterations,
  35. K.dtype(self.decay))))
  36. t = K.cast(self.iterations, K.floatx()) + 1
  37. lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
  38. (1. - K.pow(self.beta_1, t)))
  39. ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
  40. vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
  41. if self.amsgrad:
  42. vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
  43. else:
  44. vhats = [K.zeros(1) for _ in params]
  45. self.weights = [self.iterations] + ms + vs + vhats
  46. for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats):
  47. m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
  48. v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
  49. if self.amsgrad:
  50. vhat_t = K.maximum(vhat, v_t)
  51. p_t = p - lr_t * m_t / (K.sqrt(vhat_t) + self.epsilon)
  52. self.updates.append(K.update(vhat, vhat_t))
  53. else:
  54. p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)
  55. self.updates.append(K.update(m, m_t))
  56. self.updates.append(K.update(v, v_t))
  57. new_p = p_t
  58. # Apply constraints.
  59. if getattr(p, 'constraint', None) is not None:
  60. new_p = p.constraint(new_p)
  61. self.updates.append(K.update(p, new_p))
  62. return self.updates
  63. def get_config(self):
  64. config = {'lr': float(K.get_value(self.lr)),
  65. 'beta_1': float(K.get_value(self.beta_1)),
  66. 'beta_2': float(K.get_value(self.beta_2)),
  67. 'decay': float(K.get_value(self.decay)),
  68. 'epsilon': self.epsilon,
  69. 'amsgrad': self.amsgrad}
  70. base_config = super(Adam, self).get_config()
  71. return dict(list(base_config.items()) + list(config.items()))

我们修改上面的源代码以包含以下内容:

  1. 拆分层:split_1split_2是分别进行第一次和第二次拆分的层名称。

  2. 修改参数lr以应用学习率表 - 应用3个学习率表(因为差分学习结构中分为3个不同的阶段)

在更新每层的学习率时,初始代码遍历所有层并为其分配学习速率。我们改变这一点,以便为不同的层设置不同的学习率。

  1.  
  2.  
  1. class Adam_dlr(optimizers.Optimizer): """Adam optimizer. Default parameters follow those provided in the original paper. # Arguments split_1: split layer 1 split_2: split layer 2 lr: float >= 0. List of Learning rates. [Early layers, Middle layers, Final Layers] beta_1: float, 0 < beta < 1. Generally close to 1. beta_2: float, 0 < beta < 1. Generally close to 1. epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`. decay: float >= 0. Learning rate decay over each update. amsgrad: boolean. Whether to apply the AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and Beyond". """ def __init__(self, split_1, split_2, lr=[1e-7, 1e-4, 1e-2], beta_1=0.9, beta_2=0.999, epsilon=None, decay=0., amsgrad=False, **kwargs): super(Adam_dlr, self).__init__(**kwargs) with K.name_scope(self.__class__.__name__): self.iterations = K.variable(0, dtype='int64', name='iterations') self.lr = K.variable(lr, name='lr') self.beta_1 = K.variable(beta_1, name='beta_1') self.beta_2 = K.variable(beta_2, name='beta_2') self.decay = K.variable(decay, name='decay') # Extracting name of the split layers self.split_1 = split_1.weights[0].name self.split_2 = split_2.weights[0].name if epsilon is None: epsilon = K.epsilon() self.epsilon = epsilon self.initial_decay = decay self.amsgrad = amsgrad @keras.optimizers.interfaces.legacy_get_updates_support def get_updates(self, loss, params): grads = self.get_gradients(loss, params) self.updates = [K.update_add(self.iterations, 1)] lr = self.lr if self.initial_decay > 0: lr = lr * (1. / (1. + self.decay * K.cast(self.iterations, K.dtype(self.decay)))) t = K.cast(self.iterations, K.floatx()) + 1 lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t))) ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] if self.amsgrad: vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] else: vhats = [K.zeros(1) for _ in params] self.weights = [self.iterations] + ms + vs + vhats # Setting lr of the initial layers lr_grp = lr_t[0] for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats): # Updating lr when the split layer is encountered if p.name == self.split_1: lr_grp = lr_t[1] if p.name == self.split_2: lr_grp = lr_t[2] m_t = (self.beta_1 * m) + (1. - self.beta_1) * g v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g) if self.amsgrad: vhat_t = K.maximum(vhat, v_t) p_t = p - lr_grp * m_t / (K.sqrt(vhat_t) + self.epsilon) # 使用更新后的学习率 self.updates.append(K.update(vhat, vhat_t)) else: p_t = p - lr_grp * m_t / (K.sqrt(v_t) + self.epsilon) self.updates.append(K.update(m, m_t)) self.updates.append(K.update(v, v_t)) new_p = p_t # Apply constraints. if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates def get_config(self):# print('Optimizer LR: ', K.get_value(self.lr))# print() config = { 'lr': (K.get_value(self.lr)), 'beta_1': float(K.get_value(self.beta_1)), 'beta_2': float(K.get_value(self.beta_2)), 'decay': float(K.get_value(self.decay)), 'epsilon': self.epsilon, 'amsgrad': self.amsgrad} base_config = super(Adam_dlr, self).get_config() return dict(list(base_config.items()) + list(config.items()))
  2. """Adam optimizer.
  3. Default parameters follow those provided in the original paper.
  4. # Arguments
  5. split_1: split layer 1
  6. split_2: split layer 2
  7. lr: float >= 0. List of Learning rates. [Early layers, Middle layers, Final Layers]
  8. beta_1: float, 0 < beta < 1. Generally close to 1.
  9. beta_2: float, 0 < beta < 1. Generally close to 1.
  10. epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`.
  11. decay: float >= 0. Learning rate decay over each update.
  12. amsgrad: boolean. Whether to apply the AMSGrad variant of this
  13. algorithm from the paper "On the Convergence of Adam and
  14. Beyond".
  15. """
  16. def __init__(self, split_1, split_2, lr=[1e-7, 1e-4, 1e-2], beta_1=0.9, beta_2=0.999,
  17. epsilon=None, decay=0., amsgrad=False, **kwargs):
  18. super(Adam_dlr, self).__init__(**kwargs)
  19. with K.name_scope(self.__class__.__name__):
  20. self.iterations = K.variable(0, dtype='int64', name='iterations')
  21. self.lr = K.variable(lr, name='lr')
  22. self.beta_1 = K.variable(beta_1, name='beta_1')
  23. self.beta_2 = K.variable(beta_2, name='beta_2')
  24. self.decay = K.variable(decay, name='decay')
  25. # Extracting name of the split layers
  26. self.split_1 = split_1.weights[0].name
  27. self.split_2 = split_2.weights[0].name
  28. if epsilon is None:
  29. epsilon = K.epsilon()
  30. self.epsilon = epsilon
  31. self.initial_decay = decay
  32. self.amsgrad = amsgrad
  33. @keras.optimizers.interfaces.legacy_get_updates_support
  34. def get_updates(self, loss, params):
  35. grads = self.get_gradients(loss, params)
  36. self.updates = [K.update_add(self.iterations, 1)]
  37. lr = self.lr
  38. if self.initial_decay > 0:
  39. lr = lr * (1. / (1. + self.decay * K.cast(self.iterations,
  40. K.dtype(self.decay))))
  41. t = K.cast(self.iterations, K.floatx()) + 1
  42. lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
  43. (1. - K.pow(self.beta_1, t)))
  44. ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
  45. vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
  46. if self.amsgrad:
  47. vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
  48. else:
  49. vhats = [K.zeros(1) for _ in params]
  50. self.weights = [self.iterations] + ms + vs + vhats
  51. # Setting lr of the initial layers
  52. lr_grp = lr_t[0]
  53. for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats):
  54. # Updating lr when the split layer is encountered
  55. if p.name == self.split_1:
  56. lr_grp = lr_t[1]
  57. if p.name == self.split_2:
  58. lr_grp = lr_t[2]
  59. m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
  60. v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
  61. if self.amsgrad:
  62. vhat_t = K.maximum(vhat, v_t)
  63. p_t = p - lr_grp * m_t / (K.sqrt(vhat_t) + self.epsilon) # 使用更新后的学习率
  64. self.updates.append(K.update(vhat, vhat_t))
  65. else:
  66. p_t = p - lr_grp * m_t / (K.sqrt(v_t) + self.epsilon)
  67. self.updates.append(K.update(m, m_t))
  68. self.updates.append(K.update(v, v_t))
  69. new_p = p_t
  70. # Apply constraints.
  71. if getattr(p, 'constraint', None) is not None:
  72. new_p = p.constraint(new_p)
  73. self.updates.append(K.update(p, new_p))
  74. return self.updates
  75. def get_config(self):
  76. # print('Optimizer LR: ', K.get_value(self.lr))
  77. # print()
  78. config = {
  79. 'lr': (K.get_value(self.lr)),
  80. 'beta_1': float(K.get_value(self.beta_1)),
  81. 'beta_2': float(K.get_value(self.beta_2)),
  82. 'decay': float(K.get_value(self.decay)),
  83. 'epsilon': self.epsilon,
  84. 'amsgrad': self.amsgrad}
  85. base_config = super(Adam_dlr, self).get_config()
  86. return dict(list(base_config.items()) + list(config.items()))
  1. 具有热启动的随机梯度下降(SGDR)

    理想情况下,对于每一批的随机梯度下降(SGD)网络应越来越接近损失的全局最小值。因此,随着训练的进行降低学习速率是有意义的,这使得算法不会超过错过并尽可能接近最小值。通过余弦退火,我们可以使用余弦函数来降低学习率。

    在前200次迭代内逐步调低学习率

SGDR是学习速率退火的最新变体,由Loshchilov&Hutter在他们的论文“Sgdr:Stochastic Gradient Descent with Warm Restarts”(https://arxiv.org/abs/1608.03983)中引入。在这种技术中,我们不时的进行学习率突增。下面是使用余弦退火重置三个均匀间隔的学习速率的示例。

每迭代100次后将学习率调到最大

突然提高学习率背后的基本原理是:在这样做的情况下,梯度下降不会卡在任何局部最小值,并且可能以其向全局最小值的方式“跳出”局部最小值。

每次学习率下降到最小点(上图中每100次迭代),我们称之为循环。作者还建议通过一些常数因子使每个下一周期比前一周期更长。

每个周期需要两倍于上一个周期大小

在Keras中实现SGDR

使用Keras Callbacks回调函数,我们可以实现以遵循特定公式的方式更新学习率。具体实现可以参考周期性学习率官方实现方法这个Git(https://github.com/bckenstler/CLR)。

  1.  
  2.  
  1. class LR_Updater(Callback): '''This callback is utilized to log learning rates every iteration (batch cycle) it is not meant to be directly used as a callback but extended by other callbacks ie. LR_Cycle ''' def __init__(self, iterations): ''' iterations = dataset size / batch size epochs = pass through full training dataset ''' self.epoch_iterations = iterations self.trn_iterations = 0. self.history = {} def on_train_begin(self, logs={}): self.trn_iterations = 0. logs = logs or {} def on_batch_end(self, batch, logs=None): logs = logs or {} self.trn_iterations += 1 K.set_value(self.model.optimizer.lr, self.setRate()) self.history.setdefault('lr', []).append(K.get_value(self.model.optimizer.lr)) self.history.setdefault('iterations', []).append(self.trn_iterations) for k, v in logs.items(): self.history.setdefault(k, []).append(v) def plot_lr(self): plt.xlabel("iterations") plt.ylabel("learning rate") plt.plot(self.history['iterations'], self.history['lr']) def plot(self, n_skip=10): plt.xlabel("learning rate (log scale)") plt.ylabel("loss") plt.plot(self.history['lr'], self.history['loss']) plt.xscale('log')class LR_Cycle(LR_Updater): '''This callback is utilized to implement cyclical learning rates it is based on this pytorch implementation https://github.com/fastai/fastai/blob/master/fastai and adopted from this keras implementation https://github.com/bckenstler/CLR ''' def __init__(self, iterations, cycle_mult = 1): ''' iterations = dataset size / batch size iterations = number of iterations in one annealing cycle cycle_mult = used to increase the cycle length cycle_mult times after every cycle for example: cycle_mult = 2 doubles the length of the cycle at the end of each cy$ ''' self.min_lr = 0 self.cycle_mult = cycle_mult self.cycle_iterations = 0. super().__init__(iterations) def setRate(self): self.cycle_iterations += 1 if self.cycle_iterations == self.epoch_iterations: self.cycle_iterations = 0. self.epoch_iterations *= self.cycle_mult cos_out = np.cos(np.pi*(self.cycle_iterations)/self.epoch_iterations) + 1 return self.max_lr / 2 * cos_out def on_train_begin(self, logs={}): super().on_train_begin(logs={}) #changed to {} to fix plots after going from 1 to mult. lr self.cycle_iterations = 0. self.max_lr = K.get_value(self.model.optimizer.lr)
  2. '''This callback is utilized to log learning rates every iteration (batch cycle)
  3. it is not meant to be directly used as a callback but extended by other callbacks
  4. ie. LR_Cycle
  5. '''
  6. def __init__(self, iterations):
  7. '''
  8. iterations = dataset size / batch size
  9. epochs = pass through full training dataset
  10. '''
  11. self.epoch_iterations = iterations
  12. self.trn_iterations = 0.
  13. self.history = {}
  14. def on_train_begin(self, logs={}):
  15. self.trn_iterations = 0.
  16. logs = logs or {}
  17. def on_batch_end(self, batch, logs=None):
  18. logs = logs or {}
  19. self.trn_iterations += 1
  20. K.set_value(self.model.optimizer.lr, self.setRate())
  21. self.history.setdefault('lr', []).append(K.get_value(self.model.optimizer.lr))
  22. self.history.setdefault('iterations', []).append(self.trn_iterations)
  23. for k, v in logs.items():
  24. self.history.setdefault(k, []).append(v)
  25. def plot_lr(self):
  26. plt.xlabel("iterations")
  27. plt.ylabel("learning rate")
  28. plt.plot(self.history['iterations'], self.history['lr'])
  29. def plot(self, n_skip=10):
  30. plt.xlabel("learning rate (log scale)")
  31. plt.ylabel("loss")
  32. plt.plot(self.history['lr'], self.history['loss'])
  33. plt.xscale('log')
  34. class LR_Cycle(LR_Updater):
  35. '''This callback is utilized to implement cyclical learning rates
  36. it is based on this pytorch implementation https://github.com/fastai/fastai/blob/master/fastai
  37. and adopted from this keras implementation https://github.com/bckenstler/CLR
  38. '''
  39. def __init__(self, iterations, cycle_mult = 1):
  40. '''
  41. iterations = dataset size / batch size
  42. iterations = number of iterations in one annealing cycle
  43. cycle_mult = used to increase the cycle length cycle_mult times after every cycle
  44. for example: cycle_mult = 2 doubles the length of the cycle at the end of each cy$
  45. '''
  46. self.min_lr = 0
  47. self.cycle_mult = cycle_mult
  48. self.cycle_iterations = 0.
  49. super().__init__(iterations)
  50. def setRate(self):
  51. self.cycle_iterations += 1
  52. if self.cycle_iterations == self.epoch_iterations:
  53. self.cycle_iterations = 0.
  54. self.epoch_iterations *= self.cycle_mult
  55. cos_out = np.cos(np.pi*(self.cycle_iterations)/self.epoch_iterations) + 1
  56. return self.max_lr / 2 * cos_out
  57. def on_train_begin(self, logs={}):
  58. super().on_train_begin(logs={}) #changed to {} to fix plots after going from 1 to mult. lr
  59. self.cycle_iterations = 0.
  60. self.max_lr = K.get_value(self.model.optimizer.lr)

可以查看github存储库以获取差分学习SGDR的完整代码。它还包含一个测试文件,用于在样本数据集上使用这些技术。

欢迎关注磐创博客资源汇总站:

http://docs.panchuang.net/

欢迎关注PyTorch官方中文教程站:

http://pytorch.panchuang.net/

探索学习率设置技巧以提高Keras中模型性能 | 炼丹技巧的更多相关文章

  1. 提高MySQL效率与性能的技巧

    为查询缓存优化你的查询 大多数的MySQL服务器都开启了查询缓存.这是提高性最有效的方法之一,而且这是被MySQL的数据库引擎处理的.当有很多相同的查询被执行了多次的时候,这些查询结果会被放到一个缓存 ...

  2. keras 中模型的保存

    参考:https://www.cnblogs.com/weiyinfu/p/9788179.html#0 1.model.summary() 这个函数会打印模型结构,但是仅仅是打印到控制台,不能保存 ...

  3. php中一些提高性能的技巧

    php中一些提高性能的技巧 tags:php性能 提高性能 php中的@ php的静态 引言:php作为一种脚本语言,本身的性能上肯定是不如c++或者java的.拥有简单易学的特性的同时,性能提升的空 ...

  4. jQuery中的100个技巧

      1.当document文档就绪时执行JavaScript代码. 我们为什么使用jQuery库呢?原因之一就在于我们可以使jQuery代码在各种不同的浏览器和存在bug的浏览器上完美运行. < ...

  5. Visual Studio 2015中的常用调试技巧分享

    .NET 技术交流群:337901356 欢迎您的加入! 为什么要学习调试? 调试(Debug)是作为一个程序员必须要学会的东西,学会调试可以极大的提高开发效率,排错时间,很多人不喜欢调试,但我认为这 ...

  6. asp.net提高程序性能的技巧(一)

    [摘 要] 我只是提供我几个我认为有助于提高写高性能的asp.net应用程序的技巧,本文提到的提高asp.net性能的技巧只是一个起步,更多的信息请参考<Improving ASP.NET Pe ...

  7. Python机器学习笔记:深入学习Keras中Sequential模型及方法

    Sequential 序贯模型 序贯模型是函数式模型的简略版,为最简单的线性.从头到尾的结构顺序,不分叉,是多个网络层的线性堆叠. Keras实现了很多层,包括core核心层,Convolution卷 ...

  8. jQuery中的100个技巧(译)

    1.当document文档就绪时执行JavaScript代码. 我们为什么使用jQuery库呢?原因之一就在于我们可以使jQuery代码在各种不同的浏览器和存在bug的浏览器上完美运行. <sc ...

  9. 25条提高iOS App性能的技巧和诀窍

    25条提高iOS App性能的技巧和诀窍 当我们开发iOS应用时,好的性能对我们的App来说是很重要的.你的用户也希望如此,但是如果你的app表现的反应迟钝或者很慢也会伤害到你的审核. 然而,由于IO ...

随机推荐

  1. 硬件小白学习之路(1)稳压芯片LM431

    图稳压芯片LM431简介 偶然的机会接触到LM431这个芯片,周末晚上打发无聊的时光,查资料进行剖析. LM431的Symbol Diagram和Functional Diagram如图1所示,下面分 ...

  2. Go-数据类型以及变量,常量,函数,包的使用

    Go-数据类型以及变量,常量,函数,包的使用 一.数据类型 1.字符串类型 string -双引号包裹的:"xxx" -反引号包裹,可以换行, 注意: 区别于python,是没有单 ...

  3. 基于activity的强大java工作流引擎,可视化开发工作流

    我们先来看看工作流引擎和Activity? 工作流引擎 所谓工作流引擎是指workflow作为应用系统的一部分,并为之提供对各应用系统有决定作用的根据角色.分工和条件的不同决定信息传递路由.内容等级等 ...

  4. Spring事务Transactional和动态代理(一)-JDK代理实现

    系列文章索引: Spring事务Transactional和动态代理(一)-JDK代理实现 Spring事务Transactional和动态代理(二)-cglib动态代理 Spring事务Transa ...

  5. App崩溃监控

    常见马虎导致崩溃 1 数组越界: 2 多线程问题,在子线程刷新UI: 3 主线程无响应,主线程超过系统规定的时间没有响应,就会被watchdog杀掉: 4 野指针: 崩溃信息的收集却并没有那么简单.因 ...

  6. 从头认识js-DOM1

    前面说过一个完整的js实现,包括ECMAScript,BOM,DOM三部分,现在就来讲讲DOM的有关知识. DOM(文档对象模型)是针对HTML和XML文档的一个API(应用程序接口).DOM描绘来一 ...

  7. k8s环境部署.net core web项目(docker本地仓库)

    在之前的文档中,我们部署了.net core web在k8s环境下,达成了集群管理项目的目的.但是,由于是本地部署,需要在所有的node节点都拉取好镜像,这是非常麻烦的,为了只维护一份代码,同步更新. ...

  8. 【猫狗数据集】谷歌colab之使用pytorch读取自己数据集(猫狗数据集)

    之前在:https://www.cnblogs.com/xiximayou/p/12398285.html创建好了数据集,将它上传到谷歌colab 在colab上的目录如下: 在utils中的rdat ...

  9. 等宽字体的妙用-loading 点点点动画

    原理 ch等宽字体 + text-indent 动画负缩进 显示效果如 loading . loading .. loading ... loading . loading .. loading .. ...

  10. CentOS系统python默认版本由python2改为python3

    一.了解 CentOS中如果安装有yum,一般会有python2的某个版本.命令行键入python,出现的python2的环境: [root@instance-hrnebyqu src]# pytho ...