Hadoop基准测试(二)
Hadoop Examples
除了《Hadoop基准测试(一)》提到的测试,Hadoop还自带了一些例子,比如WordCount和TeraSort,这些例子在hadoop-examples-2.6.0-mr1-cdh5.16.1.jar和hadoop-examples.jar中。执行以下命令:
hadoop jar hadoop-examples--mr1-cdh5.16.1.jar
会列出所有的示例程序:
bash--mr1-cdh5.16.1.jar An example program must be given as the first argument. Valid program names are: aggregatewordcount: An Aggregate based map/reduce program that counts the words in the input files. aggregatewordhist: An Aggregate based map/reduce program that computes the histogram of the words in the input files. bbp: A map/reduce program that uses Bailey-Borwein-Plouffe to compute exact digits of Pi. dbcount: An example job that count the pageview counts from a database. distbbp: A map/reduce program that uses a BBP-type formula to compute exact bits of Pi. grep: A map/reduce program that counts the matches of a regex in the input. join: A job that effects a join over sorted, equally partitioned datasets multifilewc: A job that counts words from several files. pentomino: A map/reduce tile laying program to find solutions to pentomino problems. pi: A map/reduce program that estimates Pi using a quasi-Monte Carlo method. randomtextwriter: A map/reduce program that writes 10GB of random textual data per node. randomwriter: A map/reduce program that writes 10GB of random data per node. secondarysort: An example defining a secondary sort to the reduce. sort: A map/reduce program that sorts the data written by the random writer. sudoku: A sudoku solver. teragen: Generate data for the terasort terasort: Run the terasort teravalidate: Checking results of terasort wordcount: A map/reduce program that counts the words in the input files. wordmean: A map/reduce program that counts the average length of the words in the input files. wordmedian: A map/reduce program that counts the median length of the words in the input files. wordstandarddeviation: A map/reduce program that counts the standard deviation of the length of the words in the input files.
单词统计测试
进入角色hdfs创建的文件夹**,执行命令:vim words.txt,输入内容如下:
hello hadoop hbase mytest hadoop-node1 hadoop-master hadoop-node2 this is my test
执行命令:
../bin/hadoop fs -put words.txt /tmp/
将文件上传到HDFS中,如下:
执行以下命令,使用mapreduce统计指定文件单词个数,并将结果输入到指定文件:
hadoop jar ../jars/hadoop-examples--mr1-cdh5.16.1.jar wordcount /tmp/words.txt /tmp/words_result.txt
返回如下信息:
bash--mr1-cdh5.16.1.jar wordcount /tmp/words.txt /tmp/words_result.txt // :: INFO client.RMProxy: Connecting to ResourceManager at node1/ // :: INFO input.FileInputFormat: Total input paths to process : // :: INFO mapreduce.JobSubmitter: number of splits: // :: INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1552358721447_0060 // :: INFO impl.YarnClientImpl: Submitted application application_1552358721447_0060 // :: INFO mapreduce.Job: The url to track the job: http://node1:8088/proxy/application_1552358721447_0060/ // :: INFO mapreduce.Job: Running job: job_1552358721447_0060 // :: INFO mapreduce.Job: Job job_1552358721447_0060 running in uber mode : false // :: INFO mapreduce.Job: map % reduce % // :: INFO mapreduce.Job: map % reduce % // :: INFO mapreduce.Job: map % reduce % // :: INFO mapreduce.Job: map % reduce % // :: INFO mapreduce.Job: Job job_1552358721447_0060 completed successfully // :: INFO mapreduce.Job: Counters: File System Counters FILE: Number of bytes read= FILE: Number of bytes written= FILE: Number of read operations= FILE: Number of large read operations= FILE: Number of HDFS: Number of bytes read= HDFS: Number of bytes written= HDFS: Number of read operations= HDFS: Number of large read operations= HDFS: Number of Job Counters Launched map tasks= Launched reduce tasks= Data-local map tasks= Total Total Total Total Total vcore-milliseconds taken by all map tasks= Total vcore-milliseconds taken by all reduce tasks= Total megabyte-milliseconds taken by all map tasks= Total megabyte-milliseconds taken by all reduce tasks= Map-Reduce Framework Map input records= Map output records= Map output bytes= Map output materialized bytes= Input Combine input records= Combine output records= Reduce input Reduce shuffle bytes= Reduce input records= Reduce output records= Spilled Records= Shuffled Maps = Failed Shuffles= Merged Map outputs= GC CPU Physical memory (bytes) snapshot= Virtual memory (bytes) snapshot= Total committed heap usage (bytes)= Shuffle Errors BAD_ID= CONNECTION= IO_ERROR= WRONG_LENGTH= WRONG_MAP= WRONG_REDUCE= File Input Format Counters Bytes Read= File Output Format Counters Bytes Written=
在hdfs目录下保存了任务的结果文件:
结果记录条目从0计数到47,共计48条:
每一个part对应一个Reduce:
执行命令,查看任务执行后的结果:
bash-4.2$ hadoop fs -cat hdfs:///tmp/words_result.txt/part-r-*****
返回结果如下:
bash-4.2$ hadoop fs -cat hdfs:///tmp/words_result.txt/part-r-00000 bash-4.2$ hadoop fs -cat hdfs:///tmp/words_result.txt/part-r-00011 is bash-4.2$ hadoop fs -cat hdfs:///tmp/words_result.txt/part-r-00015 this bash-4.2$ hadoop fs -cat hdfs:///tmp/words_result.txt/part-r-00022 hadoop bash-4.2$ hadoop fs -cat hdfs:///tmp/words_result.txt/part-r-00024 hbase bash-4.2$ hadoop fs -cat hdfs:///tmp/words_result.txt/part-r-00040 hadoop-node1 bash-4.2$ hadoop fs -cat hdfs:///tmp/words_result.txt/part-r-00041 hadoop-master hadoop-node2 bash-4.2$ hadoop fs -cat hdfs:///tmp/words_result.txt/part-r-00045 my bash-4.2$ hadoop fs -cat hdfs:///tmp/words_result.txt/part-r-00047 mytest
参考: https://jeoygin.org/2012/02/22/running-hadoop-on-centos-single-node-cluster/
Hadoop基准测试(二)的更多相关文章
- MySQL基准测试(二)--方法
MySQL基准测试(二)--方法 目的: 方法不是越高级越好.而应该善于做减法.至简是一种智慧,首先要做的是收集MySQL的各状态数据.收集到了,不管各个时间段出现的问题,至少你手上有第一时间的状态数 ...
- Hadoop(二):MapReduce程序(Java)
Java版本程序开发过程主要包含三个步骤,一是map.reduce程序开发:第二是将程序编译成JAR包:第三使用Hadoop jar命令进行任务提交. 下面拿一个具体的例子进行说明,一个简单的词频统计 ...
- Hadoop 基准测试与example
#pi值示例 hadoop jar /app/cdh23502/share/hadoop/mapreduce2/hadoop-mapreduce-examples--cdh5. #生成数据 第一个参数 ...
- Hadoop系列(二)hadoop2.2.0伪分布式安装
一.环境配置 安装虚拟机vmware,并在该虚拟机机中安装CentOS 6.4: 修改hostname(修改配置文件/etc/sysconfig/network中的HOSTNAME=hadoop),修 ...
- Hadoop MapReduce 二次排序原理及其应用
关于二次排序主要涉及到这么几个东西: 在0.20.0 以前使用的是 setPartitionerClass setOutputkeyComparatorClass setOutputValueGrou ...
- Hadoop基准测试(转载)
<hadoop the definitive way>(third version)中的Benchmarking a Hadoop Cluster Test Cases的class在新的版 ...
- hadoop系列二:HDFS文件系统的命令及JAVA客户端API
转载请在页首明显处注明作者与出处 一:说明 此为大数据系列的一些博文,有空的话会陆续更新,包含大数据的一些内容,如hadoop,spark,storm,机器学习等. 当前使用的hadoop版本为2.6 ...
- hadoop(二)搭建伪分布式集群
前言 前面只是大概介绍了一下Hadoop,现在就开始搭建集群了.我们下尝试一下搭建一个最简单的集群.之后为什么要这样搭建会慢慢的分享,先要看一下效果吧! 一.Hadoop的三种运行模式(启动模式) 1 ...
- Hadoop基准测试
其实就是从网络上copy的吧,在这里做一下记录 这个是看一下有哪些测试方式: hadoop jar /opt/cloudera/parcels/CDH-5.3.6-1.cdh5.3.6.p0.11/ ...
随机推荐
- android studio :Timeout waiting to lock daemon addresses registry
一.开发中 android studio 突然遇到下面的错误提示: Error:Timeout waiting to lock daemon addresses registry. It is cur ...
- DataGrid 獲取 制定 row Col 單元格
public static class DataGridHelper { /// <summary> /// Gets the v ...
- 「CF911F」Tree Destruction
传送门 Luogu 解题思路 显然的贪心策略,因为每次都要尽量使得删点后的收益最大. 我们可以求出树的直径(因为树上的任意一个节点与其距离最远的点一定是直径的端点). 然后我们对于所有不是直径上的点, ...
- WCF技术归纳
本人在2013年就做过一个WCF的项目,但最近又开始看相关的文章,才发现当年的认识实在太浅显,这里我把WCF的几个重要知识点总结以下. ABC概念 WCF服务的构成如下图 如你所见,Host即为宿主, ...
- .NET中的字符串(2):你真的了解.NET中的String吗?
概述 String在任何语言中,都有它的特殊性,在.NET中也是如此.它属于基本数据类型,也是基本数据类型中唯一的引用类型.字符串可以声明为常量,但是它却放在了堆中.希望通过本文能够使大家对.NET中 ...
- Linux 笔记:虚拟控制台
登录后按Alt+F2键这时又可以看到"login:"提示符,这个就是第二个虚拟控制台. 一般新安装的Linux有四个虚拟控制台,可以用Alt+F1~Alt+F4来访问. 虚拟控制台 ...
- 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(3)
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...
- ssh访问ubuntu13.10
步骤: 首先确保网络连接是ok,网络连接方式"桥接“,手动配置 ip 192.168.1.9,和主机是同一网段 1.检查当前有没有安装openssh-server(已安装) 2. 安装ope ...
- js运动框架及应用
<!doctype html> <html> <head> <meta charset="utf-8"> <title> ...
- Primecoin在windows上的部署和启动服务
Primecoin在windows上的部署和启动服务: 一.从官方获得Primecoin的windows版安装包: 二.一路像安装客户端一样的安装: 三.安装成功后它会自动弹出客户端运行,同步数据, ...