Paratroopers
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8837   Accepted: 2663

Description

It is year 2500 A.D. and there is a terrible war between the forces of the Earth and the Mars. Recently, the commanders of the Earth are informed by their spies that the invaders of Mars want to land some paratroopers in the m × n grid yard of one their main weapon factories in order to destroy it. In addition, the spies informed them the row and column of the places in the yard in which each paratrooper will land. Since the paratroopers are very strong and well-organized, even one of them, if survived, can complete the mission and destroy the whole factory. As a result, the defense force of the Earth must kill all of them simultaneously after their landing.

In order to accomplish this task, the defense force wants to utilize some of their most hi-tech laser guns. They can install a gun on a row (resp. column) and by firing this gun all paratroopers landed in this row (resp. column) will die. The cost of installing a gun in the ith row (resp. column) of the grid yard is ri (resp. ci ) and the total cost of constructing a system firing all guns simultaneously is equal to the product of their costs. Now, your team as a high rank defense group must select the guns that can kill all paratroopers and yield minimum total cost of constructing the firing system.

Input

Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing three integers 1 ≤ m ≤ 50 , 1 ≤ n ≤ 50 and 1 ≤ l ≤ 500 showing the number of rows and columns of the yard and the number of paratroopers respectively. After that, a line with m positive real numbers greater or equal to 1.0 comes where the ith number is ri and then, a line with n positive real numbers greater or equal to 1.0 comes where the ith number is ci. Finally, l lines come each containing the row and column of a paratrooper.

Output

For each test case, your program must output the minimum total cost of constructing the firing system rounded to four digits after the fraction point.

Sample Input

1
4 4 5
2.0 7.0 5.0 2.0
1.5 2.0 2.0 8.0
1 1
2 2
3 3
4 4
1 4

Sample Output

16.0000

首先用log化×为+,然后源点S向每一行连边,容量是log10(r[i]),每一列向T连边,容量是log10(c[i]),
然后对于每个attacker,把其对应的行列连起来,容量是INF,跑最大流就可以了。 马虎的错误
T和样例个数的T又重了,memset(head)忘掉 然后INF不能开大,开的大一点就WA,同时判断增路的时候要用fabs判断
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
const int M=;
const double INF=10.0;
int head[N],tot,S,T;
int q[N],dis[N],n,m,Q;
bool vis[N];
struct node
{
int next,v;
double w;
} e[M<<];
void add(int u,int v,double w)
{
e[tot].v=v;
e[tot].w=w;
e[tot].next=head[u];
head[u]=tot++;
}
bool bfs()
{
memset(dis,-,sizeof(dis));
dis[S]=;
int l=,r=;
q[r++]=S;
while(l<r)
{
int u=q[l++];
for(int i=head[u]; ~i; i=e[i].next)
{
int v=e[i].v;
if(dis[v]==-&&fabs(e[i].w-)>1e-)
{
q[r++]=v;
dis[v]=dis[u]+;
if(v==T) return true;
}
}
}
return false;
}
double dfs(int s,double low)
{
if(s==T||!low) return low;
double ans=low,a;
for(int i=head[s]; ~i; i=e[i].next)
{
if(fabs(e[i].w-)>1e-&&dis[e[i].v]==dis[s]+&&(a=dfs(e[i].v,min(e[i].w,ans))))
{
e[i].w-=a;
e[i^].w+=a;
ans-=a;
if(fabs(ans-)<1e-) return low;
}
}
if(low==ans) dis[s]=-;
return low-ans;
}
int main(){
int Ta,r,c;
for(scanf("%d",&Ta);Ta--;){
scanf("%d%d%d",&n,&m,&Q);
S=,T=n+m+;
memset(head,-,sizeof(head));
tot=;
double x;
for(int i=;i<=n;++i) {
scanf("%lf",&x);
add(S,i,log10(x));
add(i,S,);
}
for(int i=;i<=m;++i) {
scanf("%lf",&x);
add(i+n,T,log10(x));
add(T,i+n,);
}
while(Q--){
scanf("%d%d",&r,&c);
add(r,c+n,INF);
add(c+n,r,);
}
double ans=;
while(bfs()) ans+=dfs(S,INF);
printf("%.4f\n",pow(,ans));
}
}

poj3308 最小点权覆盖的更多相关文章

  1. POJ3308 Paratroopers(最小割/二分图最小点权覆盖)

    把入侵者看作边,每一行每一列都是点,选取某一行某一列都有费用,这样问题就是选总权最小的点集覆盖所有边,就是最小点权覆盖. 此外,题目的总花费是所有费用的乘积,这时有个技巧,就是取对数,把乘法变为加法运 ...

  2. poj3308 Paratroopers --- 最小点权覆盖-&gt;最小割

    题目是一个非常明显的二分图带权匹配模型, 加入源点到nx建边,ny到汇点建边,(nx.ny)=inf建边.求最小割既得最小点权覆盖. 在本题中因为求的是乘积,所以先所有取log转换为加法,最后再乘方回 ...

  3. POJ 2125 Destroying the Graph 二分图最小点权覆盖

    Destroying The Graph Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8198   Accepted: 2 ...

  4. POJ2125 Destroying The Graph(二分图最小点权覆盖集)

    最小点权覆盖就是,对于有点权的有向图,选出权值和最少的点的集合覆盖所有的边. 解二分图最小点权覆盖集可以用最小割: vs-X-Y-vt这样连边,vs和X部点的连边容量为X部点的权值,Y部和vt连边容量 ...

  5. POJ2125 Destroying The Graph (最小点权覆盖集)(网络流最小割)

                                                          Destroying The Graph Time Limit: 2000MS   Memo ...

  6. POJ 2125 Destroying The Graph (二分图最小点权覆盖集+输出最小割方案)

    题意 有一个图, 两种操作,一种是删除某点的所有出边,一种是删除某点的所有入边,各个点的不同操作分别有一个花费,现在我们想把这个图的边都删除掉,需要的最小花费是多少. 思路 很明显的二分图最小点权覆盖 ...

  7. POJ 3308 Paratroopers (对数转换+最小点权覆盖)

    题意 敌人侵略r*c的地图.为了消灭敌人,可以在某一行或者某一列安置超级大炮.每一个大炮可以瞬间消灭这一行(或者列)的敌人.安装消灭第i行的大炮消费是ri.安装消灭第j行的大炮消费是ci现在有n个敌人 ...

  8. POJ2125 Destroying The Graph 二分图 + 最小点权覆盖 + 最小割

    思路来源:http://blog.csdn.net/lenleaves/article/details/7873441 求最小点权覆盖,同样求一个最小割,但是要求出割去了那些边, 只要用最终的剩余网络 ...

  9. POJ 2125 Destroying The Graph 二分图 最小点权覆盖

    POJ2125 题意简述:给定一个有向图,要通过某些操作删除所有的边,每一次操作可以选择任意一个节点删除由其出发的所有边或者通向它的所有边,两个方向有不同的权值.问最小权值和的解决方案,要输出操作. ...

随机推荐

  1. 理解分布式一致性:拜占庭容错与PBFT

    理解分布式一致性:拜占庭容错与PBFT 拜占庭问题 拜占庭容错BFT PBFT(Practical Byzantine Fault Tolerance) why 3f+1 ? PBFT 的优点 PBF ...

  2. 【集群实战】NFS服务常见故障排查和解决方法

    NFS,全名叫Network File System,中文叫网络文件系统,是Linux.UNIX系统的分布式文件系统的一个组成部分,可实现在不同网络上共享远程文件系统. NFS由Sun公司开发,目前已 ...

  3. 洛谷P3018 [USACO11MAR]树装饰Tree Decoration

    洛谷P3018 [USACO11MAR]树装饰Tree Decoration树形DP 因为要求最小,我们就贪心地用每个子树中的最小cost来支付就行了 #include <bits/stdc++ ...

  4. java中for循环和while循环,哪个更快?--一道面试题

    for的 while的

  5. DeepWalk论文精读:(1)解决问题&相关工作

    模块1 1. 研究背景 随着互联网的发展,社交网络逐渐复杂化.多元化.在一个社交网络中,充斥着不同类型的用户,用户间产生各式各样的互动联系,形成大小不一的社群.为了对社交网络进行研究分析,需要将网络中 ...

  6. 图论--2-SAT--HDU/HDOJ 4115 Eliminate the Conflict

    Problem Description Conflicts are everywhere in the world, from the young to the elderly, from famil ...

  7. 图论--边双连通V-DCC缩点

    // tarjan算法求无向图的割点.点双连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> ...

  8. python selenium(环境搭建)

    一:自动化了解知识 工具安装 什么样的项目适合做自动化? 自动化测试一般在什么阶段开始实施? 你们公司自动化的脚本谁来维护?如何维护? 自动化用例覆盖率是多少? 自动化的原理 通过 webdriver ...

  9. spring bootweb综合开发的整理

    1.json接口开发 当前开发中微服务的概念日渐深入人心,所以json数据交互可以带来的便利也不言而喻.在springboot中json数据的返回方式比较简单,只需要用@RestController注 ...

  10. JAVA设计模式之桥接模式(bridge)

    桥接模式: 分离抽象与具体实现,让他们可以独自发展,防止类爆炸 场景: 过年走亲戚是我们中国人传统的习俗,走亲戚那就少不了要买东西(苹果,牛奶等等),这些具体的东西就是具体的类 蒙牛牛奶,有机苹果,有 ...