F. Moving On
http://codeforces.com/gym/102222/problem/F
fory
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define lson root<<1,l,midd
#define rson root<<<1|1,midd+1,r
#define pb push_back
const int M=;
const int inf=0x3f3f3f3f;
int a[M],b[M],dp[M][M][M];
bool cmp(int x,int y){
return a[x]<a[y];
}
int main(){
int t;
scanf("%d",&t);
for(int l=;l<=t;l++){
int n,m;
scanf("%d%d",&n,&m);
memset(dp,inf,sizeof(dp));
for(int i=;i<=n;i++)
scanf("%d",&a[i]),b[i]=i;
sort(b+,b++n,cmp);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
scanf("%d",&dp[][i][j]);
for(int k=;k<=n;k++){
int now=b[k];
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dp[k][i][j]=min(dp[k-][i][j],dp[k-][i][now]+dp[k-][now][j]);
}
printf("Case #%d:\n",l);
while(m--){
int u,v,up;
scanf("%d%d%d",&u,&v,&up);
int mubiao=;
for(int i=;i<=n;i++){
if(a[b[i]]>up)
break;
mubiao++;
}
printf("%d\n",dp[mubiao][u][v]);
}
}
return ;
}
F. Moving On的更多相关文章
- F. Moving Points 解析(思維、離散化、BIT、前綴和)
Codeforce 1311 F. Moving Points 解析(思維.離散化.BIT.前綴和) 今天我們來看看CF1311F 題目連結 題目 略,請直接看原題. 前言 最近寫1900的題目更容易 ...
- The 2019 Asia Yinchuan First Round Online Programming F. Moving On
t题目链接:https://nanti.jisuanke.com/t/41290 思路:题目意思很容易想到floyd,但是由于危险度的限制,我们该怎么跑floyd呢. 一开始理解错题目了,以为u-&g ...
- F. Moving Points
https://codeforces.com/contest/1311/problem/F 这是一道线段树类型的题: 可以用权值线段树或者树状数组来解: 所以,我们可以分为两部分,第一部分是计算出到当 ...
- Codeforces Round #624 (Div. 3) F. Moving Points 题解
第一次写博客 ,请多指教! 翻了翻前面的题解发现都是用树状数组来做,这里更新一个 线段树+离散化的做法: 其实这道题是没有必要用线段树的,树状数组就能够解决.但是个人感觉把线段树用熟了会比树状数组更有 ...
- F - Moving Points树状数组
题:https://codeforces.com/contest/1311/problem/F 题意:给定x轴上的点以及他们的速度v,只在x轴上运动,求最小的dis之和,注意,这里的时间是可随意的,比 ...
- 2018 宁夏省赛 F. Moving On
题目链接 https://nanti.jisuanke.com/t/28406 大意是 有n(<=200)个城市,城市间有路(Input给了邻接矩阵) 每个城市有一个危险值,然后是q(2e4) ...
- 详细讲解Codeforces Round #624 (Div. 3) F. Moving Points
题意:给定n个点的初始坐标x和速度v(保证n个点的初始坐标互不相同), d(i,j)是第i个和第j个点之间任意某个时刻的最小距离,求出n个点中任意一对点的d(i,j)的总和. 题解:可以理解,两个点中 ...
- 2012 Multi-University #9
计算几何 A Farmer Greedy 题意:n个点选3个组成三角形,问m个点在三角形内的数字是奇数的这样的三角形个数. 分析:暴力O(N^3*M)竟然能过!我写的搓,加了优化才过掉.正解是先处理出 ...
- 2018-2019 ACM-ICPC, China Multi-Provincial Collegiate Programming Contest
目录 Contest Info Solutions A. Maximum Element In A Stack B. Rolling The Polygon C. Caesar Cipherq D. ...
随机推荐
- Neo4j安装配置(mac)
Neo4j安装配置(mac) 1.下载APP 注意:无需配置变量 下载地址:https://neo4j.com/download/ 2.安装程序并启动 3.创建数据库(local) 选择版本 4.启动 ...
- Python—异步任务队列Celery简单使用
一.Celery简介 Celery是一个简单,灵活,可靠的分布式系统,用于处理大量消息,同时为操作提供维护此类系统所需的工具.它是一个任务队列,专注于实时处理,同时还支持任务调度. 中间人boker: ...
- MySQL--InnoDB 关键特性
插入缓冲 Insert Buffer 对于非聚集索引的插入或更新操作,不是每一次直接插入到索引页中,而是先判断插入的非聚集索引页是否在缓冲池中,若在,则直接插入:若不在,则先放入到一个 Insert ...
- ccs-基础-阴影
1.html代码 <div class="demo demo1">假如生活欺骗了你</div> <div class="demo demo2 ...
- Cracking Digital VLSI Verification Interview 第四章
目录 Hardware Description Languages Verilog SystemVerilog 对Cracking Digital VLSI Verification Intervie ...
- 《Docekr入门学习篇》——Docker实战
基础环境 root@docker~]# cat /etc/redhat-release #查看版本号 CentOS Linux release (Core) [root@docker ~]# unam ...
- docker---设置镜像加速器
国内从 Docker Hub 拉取镜像有时会遇到困难,此时可以配置镜像加速器,国内很多云服务商都提供了国内加速器服务,如: Azure 中国镜像: https://dockerhub.azk8s.cn ...
- Java之同步方法处理实现Runnable接口的线程安全问题
/** * 使用同步方法解决实现Runnable接口的线程安全问题 * * * 关于同步方法的总结: * 1. 同步方法仍然涉及到同步监视器,只是不需要我们显式的声明. * 2. 非静态的同步方法,同 ...
- 创造新时代!谷歌、微软、Facebook等巨头推出全新数据计划的背后
对于所有互联网企业来说,用户及其数据都是最核心.最根本的宝贵财富.因此,每家互联网企业都不会轻易将自家的数据与别人分享.试想一下,阿里会将淘宝和天猫的数据共享给京东吗?腾讯会把QQ和微信的数据分享给微 ...
- jq轮播图
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...