(没太听明白,以后再听)

1. 如何欺骗神经网络?

  这部分研究最开始是想探究神经网络到底是如何工作的。结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案。比如下图,左边的熊猫被识别成熊猫,但是加上中间的小“噪音”一样的数值,右图的熊猫就识别不出来了。而且这个小“噪音”不是随机的,它更像是offset,是某种系统误差,叠加到图片上去,总是可以欺骗神经网络。

2. 神经网络从权重到输出的映射是非线性的,非常复杂,非常难优化、训练。但是从输入到输出的映射可以看成线性的,是可以预测的,优化出输入要比优化出权重容易得多。可以利用输入到输出的线性关系,很方便地生成可以欺骗(或者叫攻击)神经网络的样例。

  FGSM (Fast Gradient Step Method):一种对抗方法。这个方法的核心思想是在每一步优化的过程中加入少量噪声,让预测结果朝目标类别偏移,或者如你所愿远离正确的类别。

  Transferability Attack:在自己的网络上找到攻击样例,这个样例往往也能攻破其他神经网络。

3. 对抗样例可以用来训练网络得到更好的效果。

4. 总结

cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training的更多相关文章

  1. cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training 听课笔记

    (没太听明白,以后再听) 1. 如何欺骗神经网络? 这部分研究最开始是想探究神经网络到底是如何工作的.结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案.比 ...

  2. Generating Adversarial Examples with Adversarial Networks

    目录 概 主要内容 black-box 拓展 Xiao C, Li B, Zhu J, et al. Generating Adversarial Examples with Adversarial ...

  3. cs231n spring 2017 lecture13 Generative Models 听课笔记

    1. 非监督学习 监督学习有数据有标签,目的是学习数据和标签之间的映射关系.而无监督学习只有数据,没有标签,目的是学习数据额隐藏结构. 2. 生成模型(Generative Models) 已知训练数 ...

  4. cs231n spring 2017 lecture13 Generative Models

    1. 非监督学习 监督学习有数据有标签,目的是学习数据和标签之间的映射关系.而无监督学习只有数据,没有标签,目的是学习数据额隐藏结构. 2. 生成模型(Generative Models) 已知训练数 ...

  5. cs231n spring 2017 lecture11 Detection and Segmentation 听课笔记

    1. Semantic Segmentation 把每个像素分类到某个语义. 为了减少运算量,会先降采样再升采样.降采样一般用池化层,升采样有各种"Unpooling"." ...

  6. cs231n spring 2017 lecture9 CNN Architectures 听课笔记

    参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...

  7. cs231n spring 2017 lecture7 Training Neural Networks II 听课笔记

    1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...

  8. cs231n spring 2017 Python/Numpy基础 (1)

    本文使根据CS231n的讲义整理而成(http://cs231n.github.io/python-numpy-tutorial/),以下内容基于Python3. 1. 基本数据类型:可以用 prin ...

  9. cs231n spring 2017 lecture11 Detection and Segmentation

    1. Semantic Segmentation 把每个像素分类到某个语义. 为了减少运算量,会先降采样再升采样.降采样一般用池化层,升采样有各种“Unpooling”.“Transpose Conv ...

随机推荐

  1. Java之创建线程的方式三:实现Callable接口

    import java.util.concurrent.Callable;import java.util.concurrent.ExecutionException;import java.util ...

  2. ssh 账号密码登录设置

    找到/etc/ssh/sshd_config文件中的 PasswordAuthentication no 改为PasswordAuthentication yes 并保存. 重启ssh服务:sudo ...

  3. TX2Ubuntu16.04上安装 kinectV2

    本文参考   https://www.ncnynl.com/archives/201706/1780.html 参考    https://blog.csdn.net/qq_33835307/arti ...

  4. 堆--P1168 中位数

    题目描述 给出一个长度为N的非负整数序列Ai​,对于所有1≤k≤(N+1)/2,输出A1,A3,…,A2k−1的中位数.即前1,3,5,…个数的中位数. 输入格式 第1行为一个正整数N,表示了序列长度 ...

  5. 使用图数据库 Nebula Graph 数据导入快速体验知识图谱

    本文由 Nebula Graph 实习生@王杰贡献. 最近 @Yener 开源了史上最大规模的中文知识图谱——OwnThink(链接:https://github.com/ownthink/Knowl ...

  6. Exit of “> ” mode in Unix shell

    https://unix.stackexchange.com/questions/118209/exit-of-mode-in-unix-shell ^D will only work if a pr ...

  7. 吴裕雄--天生自然深度学习TensorBoard可视化:命名空间

    # 1. 不同的命名空间. import tensorflow as tf with tf.variable_scope("foo"): a = tf.get_variable(& ...

  8. LeetCode No.163,164,165

    No.163 FindMissingRanges 缺失的区间 题目 给定一个排序的整数数组 nums ,其中元素的范围在闭区间 [lower, upper] 当中,返回不包含在数组中的缺失区间. 示例 ...

  9. Java 开发者必须了解的 16 个Java 顶级开源项目!

    本文已经收录自笔者开源的 JavaGuide: https://github.com/Snailclimb/JavaGuide ([Java学习+面试指南] 一份涵盖大部分Java程序员所需要掌握的核 ...

  10. 循环队列--忘记分配空间和如何用tag判断队空队满

    #include<iostream> #define maxsize 100 using namespace std; struct CLqueue { int *Q; int front ...