CodeForces - 876B Divisiblity of Differences
题意:给定n个数,从中选取k个数,使得任意两个数之差能被m整除,若能选出k个数,则输出,否则输出“No”。
分析:
1、若k个数之差都能被m整除,那么他们两两之间相差的是m的倍数,即他们对m取余的余数是相同的。
2、记录n个数对m取余的余数,计算出数量最多的余数ma。
3、ma>=k,才能选出,并输出即可。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define lowbit(x) (x & (-x))
const double eps = 1e-8;
inline int dcmp(double a, double b){
if(fabs(a - b) < eps) return 0;
return a > b ? 1 : -1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
const int MOD = 1e9 + 7;
const double pi = acos(-1.0);
const int MAXN = 100000 + 10;
const int MAXT = 10000 + 10;
using namespace std;
int a[MAXN];
int yu[MAXN];
map<int, int> mp;
int main(){
int n, k, m;
scanf("%d%d%d", &n, &k, &m);
for(int i = 0; i < n; ++i){
scanf("%d", &a[i]);
}
for(int i = 0; i < n; ++i){
yu[i] = a[i] % m;
++mp[yu[i]];
}
int ma = 0;
int id = 0;
for(map<int, int>::iterator it = mp.begin(); it != mp.end(); ++it){
if((*it).second > ma){
ma = (*it).second;
id = (*it).first;
}
}
if(ma < k){
printf("No\n");
}
else{
printf("Yes\n");
bool flag = true;
int t = 0;
for(int i = 0; i < n; ++i){
if(yu[i] == id){
if(flag) flag = false;
else printf(" ");
printf("%d", a[i]);
++t;
if(t == k) break;
}
}
printf("\n");
}
return 0;
}
CodeForces - 876B Divisiblity of Differences的更多相关文章
- Codeforces 876B Divisiblity of Differences:数学【任意两数之差为k的倍数】
题目链接:http://codeforces.com/contest/876/problem/B 题意: 给你n个数a[i],让你找出一个大小为k的集合,使得集合中的数两两之差为m的倍数. 若有多解, ...
- Codeforces B. Divisiblity of Differences
B. Divisiblity of Differences time limit per test 1 second memory limit per test 512 megabytes input ...
- Codeforces 876B:Divisiblity of Differences(数学)
B. Divisiblity of Differences You are given a multiset of n integers. You should select exactly k of ...
- codeforces #441 B Divisiblity of Differences【数学/hash】
B. Divisiblity of Differences time limit per test 1 second memory limit per test 512 megabytes input ...
- B. Divisiblity of Differences
B. Divisiblity of Differencestime limit per test1 secondmemory limit per test512 megabytesinputstand ...
- codeforces 876B
B. Divisiblity of Differences time limit per test 1 second memory limit per test 512 megabytes input ...
- Codeforces Round #441 (Div. 2, by Moscow Team Olympiad) B. Divisiblity of Differences
http://codeforces.com/contest/876/problem/B 题意: 给出n个数,要求从里面选出k个数使得这k个数中任意两个的差能够被m整除,若不能则输出no. 思路: 差能 ...
- CodeForces - 876B H - 差异的可分割性
现在有n个整数,在这n个数中找出k个数,保证这k个数中任意两个数差的绝对值可以被m整除. Input第一行输入三个整数n,k,m(2<=k<=n<=100000,1<=m< ...
- Codeforces Round #441 (Div. 2, by Moscow Team Olympiad)
A. Trip For Meal 题目链接:http://codeforces.com/contest/876/problem/A 题目意思:现在三个点1,2,3,1-2的路程是a,1-3的路程是b, ...
随机推荐
- mcast_block_source函数
#include <errno.h> #include <sys/socket.h> #define SA struct sockaddr int mcast_block_so ...
- python requirements.txt批量下载安装离线
有些情况下我们需要下载N个第三方包,或者下载的包依赖其它包,一个个下载非常浪费时间.这时我们可以通过如下两种方式的命令批量下载. 方式1 pip download -d /tmp/packagesdi ...
- Linux - 监控工具Conky
主题Harmattan,https://www.jianshu.com/p/5c8d4a1f4c91,这个主题在deepin linux下有黑框背景,因为是伪透明,所以选择黑色背景的主题即可
- 【转载】 NVIDIA Tesla/Quadro和GeForce GPU比较
原文地址: https://blog.csdn.net/m0_37462765/article/details/74394932 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议 ...
- electron 查看版本信息
console.log(process) console.log(process.versions.electron) process 里包含很多信息:
- Python学习笔记002
字符编码:把二进制字符翻译成字符 ASCII码表 256 一个字节,8个比特 支持中文: GB2312 GBK1.0 GB18030 BIG5(台湾) unicode UTF-8 开头定义 ...
- linux 部署java 项目命令
1:服务器部署路径:/home/tomcat/tomcat/webapps (用FTP工具链接服务器把包上传到此目录) 2:进入项目文件夹 cd /home/tomcat/tomcat/webapp ...
- awk及sum求和!
awk 也是一个强大的编辑工具,它比 sed 的功能更加强大,可以在无交互的情况下实现相当复杂的文本操作. 1.awk 的语法 awk [选项] ' print $1' 文件名 选项 -F指定分隔符 ...
- Day11 - N - Game HDU - 3389
题目链接 题意是说有1到n个标号的盒子,选择一个非空的盒子A,B是否空无所谓,满足(A+B)%2=1,(A+B)%3=0,A>B 解上面的同余方程组,最小解为3,循环为2*3=6,那我们可以把前 ...
- 设计模式课程 设计模式精讲 7-3 建造者模式源码解析(jdk+guava+spring+mybaties)
1 源码解析 1.1 jdk解析 1.2 guava解析 1.3 spring解析 1.4 mybaties解析 1 源码解析 1.1 jdk解析 String public StringBuilde ...