《The HiBench Benchmark Suite: Characterization of the MapReduce-Based Data Analysis》内容精选

We then evaluate and characterize the Hadoop framework using HiBench, in terms of speed (i.e., job running time), throughput (i.e., the number of tasks completed per minute), HDFS bandwidth, system resource (e.g., CPU, memory and I/O) utilizations, and data access patterns.

关键内容:speed、 throughput、HDFS bandwidth、 system resource、data access patterns

the last one is an enhanced version of the DFSIO benchmark that we have extended to evaluate the aggregated bandwidth delivered by HDFS.

关键内容:evaluate the aggregated bandwidth delivered by HDFS

As shown in Fig. 1, the aggregated throughput curve has a warm-up period and a cool-down period where map tasks are launching up and shutting down respectively. Between these two periods, there is a steady period where the aggregated throughput values are stable across different time slots. Therefore, the Enhanced DFSIO workload computes the aggregated HDFS throughput by averaging the throughput value of each time slot in the steady period. In Enhanced DFSIO, when the number of concurrent map tasks at a time slot is above a specified percentage (e.g., 50% is used in our benchmarking) of the total map task slots in the Hadoop cluster, the slot is considered to be in the steady period.

关键内容:warm-up period、cool-down period、steady period、computes the aggregated HDFS throughput by averaging the throughput value of each time slot in the steady period

In essence, the TeraSort workload is similar to Sort and therefore is I/O bound in nature. However, we have compressed its shuffle data (i.e., map output) in the experiment so as to minimize the disk and network I/O during shuffle, as shown in Table III. Consequently, TeraSort have very high CPU utilization and moderate disk I/O during the map stage and shuffle phases, and moderate CPU utilization and heavy disk I/O during the reduce phases, as shown in Fig. 4.

关键内容:map stage、shuffle phases、reduce phases、high、moderate、CPU utilization、disk I/O

The best performance (total running time) of Hadoop workloads is usually obtained by accurately estimating the size of the map output, shuffle data and reduce input data, and properly allocating memory buffers to prevent multiple spilling (to disk) of those data.

关键内容:estimating the size of the map output、 shuffle data and reduce input data、allocating memory buffers

HiBench成长笔记——(7) 阅读《The HiBench Benchmark Suite: Characterization of the MapReduce-Based Data Analysis》的更多相关文章

  1. HiBench成长笔记——(2) CentOS部署安装HiBench

    安装Scala 使用spark-shell命令进入shell模式,查看spark版本和Scala版本: 下载Scala2.10.5 wget https://downloads.lightbend.c ...

  2. HiBench成长笔记——(3) HiBench测试Spark

    很多内容之前的博客已经提过,这里不再赘述,详细内容参照本系列前面的博客:https://www.cnblogs.com/ratels/p/10970905.html 创建并修改配置文件conf/spa ...

  3. HiBench成长笔记——(1) HiBench概述

    测试分类 HiBench共计19个测试方向,可大致分为6个测试类别:分别是micro,ml(机器学习),sql,graph,websearch和streaming. 2.1 micro Benchma ...

  4. HiBench成长笔记——(5) HiBench-Spark-SQL-Scan源码分析

    run.sh #!/bin/bash # Licensed to the Apache Software Foundation (ASF) under one or more # contributo ...

  5. HiBench成长笔记——(4) HiBench测试Spark SQL

    很多内容之前的博客已经提过,这里不再赘述,详细内容参照本系列前面的博客:https://www.cnblogs.com/ratels/p/10970905.html 和 https://www.cnb ...

  6. HiBench成长笔记——(11) 分析源码run.sh

    #!/bin/bash # Licensed to the Apache Software Foundation (ASF) under one or more # contributor licen ...

  7. HiBench成长笔记——(10) 分析源码execute_with_log.py

    #!/usr/bin/env python2 # Licensed to the Apache Software Foundation (ASF) under one or more # contri ...

  8. HiBench成长笔记——(9) 分析源码monitor.py

    monitor.py 是主监控程序,将监控数据写入日志,并统计监控数据生成HTML统计展示页面: #!/usr/bin/env python2 # Licensed to the Apache Sof ...

  9. HiBench成长笔记——(8) 分析源码workload_functions.sh

    workload_functions.sh 是测试程序的入口,粘连了监控程序 monitor.py 和 主运行程序: #!/bin/bash # Licensed to the Apache Soft ...

随机推荐

  1. Hive的mysql安装配置

    一.MySQL的安装 Hive的数据,是存在HDFS里的.此外,hive有哪些数据库,每个数据库有哪些表,这样的信息称之为hive的元数据信息. 元数据信息不存在HDFS,而是存在关系型数据库里,hi ...

  2. Mapgis地图颜色配置(专题图配置)----对比Arcgis根据属性配置图斑颜色

    对于大多数arcgis用户来说,根据属性配置图斑颜色对于大家来说应该并不陌生.本文将就arcgis图斑颜色设置与mapgis做出比对,为大家提供更为绚丽的地图配色.    Arcgis颜色配置方案 右 ...

  3. 理解js中的原型链

    对象有”prototype”属性,函数对象有”prototype”属性,原型对象有”constructor”属性. 关于原型 在JavaScript中,原型也是一个对象,通过原型可以实现对象的属性继承 ...

  4. leetCode练题——14. Longest Common Prefix

    1.题目 14. Longest Common Prefix   Write a function to find the longest common prefix string amongst a ...

  5. Python之时间和日期模块

    1.import time 先要导入时间模块 1)time.time()得到当前的时间,返回的是时间戳,表示自1970年1月1日起到程序运行时的秒数 import time print(time.ti ...

  6. 工具 - gravatar保存头像

    流程 注册账号,上传头像 https://secure.gravatar.com/avatar/ 就可以获取到头像 参数 例子flasky git reset --hard 10c def grava ...

  7. Python中.npz文件的读取

    有时候从网上下载的数据集扩展名(后缀名)是npz,我们需要对数据进行加载(读取):例如:识别猫狗图片的二分类,下的数据集分别为cat.npz和dog.npz import numpy as npcat ...

  8. [转]No configuration found for the specified action 原因及解决方案

    转自 报错内容 警告: No configuration found for the specified action: 'login' in namespace: ''. Form action d ...

  9. Kali中文乱码问题

    上面的是用网上介绍的安装组件无法安装,老是提示最后一句:Unable to locate package ...... 后来觉得应该是因为安装Kali时在最后有个选择更新系统的一个配置上,我选择了下面 ...

  10. Python学习第十四课——面向对象基本思想part1

    面向对象的基本思想 # 写法1 person1 = { 'name': 'hanhan', ', 'sex': '男' } def xue_xi(person): print('%s在学习' % pe ...