解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论

题目1、熊怪吃核桃

题目描述

森林里有一只熊怪,很爱吃核桃。不过它有个习惯,每次都把找到的核桃分成相等的两份,吃掉一份,留一份。如果不能等分,熊怪就会扔掉一个核桃再分。第二天再继续这个过程,直到最后剩一个核桃了,直接丢掉。

有一天,熊怪发现了1543个核桃,请问,它在吃这些核桃的过程中,一共要丢掉多少个核桃。

请填写该数字(一个整数),不要填写任何多余的内容或说明文字。

结果:5

public class One {
public static int eatWalnut(int walnutNum){
int throwNum = 0;
return eatWalnut(walnutNum, throwNum);
}
private static int eatWalnut(int walnutNum, int throwNum){
if (walnutNum == 1) {
++throwNum;
--walnutNum;
return throwNum;
}
if (walnutNum%2 !=0 ) {
++throwNum;
--walnutNum;
}
return eatWalnut(walnutNum/2, throwNum);
}
public static void main(String[] args){
int i = eatWalnut(1543);
System.out.print(i);
}
}

题目2、星系炸弹

题目描述

在X星系的广袤空间中漂浮着许多X星人造“炸弹”,用来作为宇宙中的路标。

每个炸弹都可以设定多少天之后爆炸。

比如:阿尔法炸弹2015年1月1日放置,定时为15天,则它在2015年1月16日爆炸。

有一个贝塔炸弹,2014年11月9日放置,定时为1000天,请你计算它爆炸的准确日期。

请填写该日期,格式为 yyyy-mm-dd 即4位年份2位月份2位日期。比如:2015-02-19

请严格按照格式书写。不能出现其它文字或符号。

import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.GregorianCalendar; /**
* 月份0~11 SimpleDateFormat可用于format、parse Calendar
*
* @description TODO
* @author frontier
* @time 2019年3月2日 下午3:38:41 yyyy/MM/dd HH(hh):mm:ss SSS
*/
public class 结果填空2星系炸弹 {
static SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd"); public static void main(String[] args) {
Calendar calendar = new GregorianCalendar(); calendar.set(2014, 10, 9);
System.out.println(df.format(calendar.getTime()));
calendar.add(Calendar.DATE, 1000);
System.out.println(df.format(calendar.getTime()));
}
}

题目3、九数分三组

题目描述

1~9的数字可以组成3个3位数,设为:A,B,C, 现在要求满足如下关系:

B = 2 * A

C = 3 * A

请你写出A的所有可能答案,数字间用空格分开,数字按升序排列。

注意:只提交A的值,严格按照格式要求输出。

public class Main {
public static int[] a = new int[15];
public static boolean[] book = new boolean[15];
public static int n=9;
public static void dfs(int step)
{
if(step== n+1)
{
if(2*(a[1]*100+a[2]*10+a[3]) == a[4]*100+a[5]*10+a[6] &&
3*(a[1]*100+a[2]*10+a[3]) == a[7]*100+a[8]*10+a[9]) {
System.out.println(a[1]+" "+a[2]+" "+a[3]);
}
return;
}
for(int x=1;x<=9;x++)
{
if(book[x]==false)
{
book[x] = true;
a[step] = x;
dfs(step+1);
book[x] = false;
}
}
}
public static void main(String[] args) {
dfs(1);
}
}

题目4、循环节长度

两个整数做除法,有时会产生循环小数,其循环部分称为:循环节。
比如,11/13=6=>0.846153846153..... 其循环节为[846153] 共有6位。
下面的方法,可以求出循环节的长度。 请仔细阅读代码,并填写划线部分缺少的代码。 public static int f(int n, int m)
{
n = n % m;
Vector v = new Vector(); for(;;)
{
v.add(n);
n *= 10;
n = n % m;
if(n==0) return 0;
if(v.indexOf(n)>=0) _________________________________ ; //填空
}
} * 输入描述:   * 程序输出:  注意,只能填写缺少的部分,不要重复抄写已有代码。不要填写任何多余的文字。 * 程序头部的注释结束 */ 上代码: import java.util.Vector; public class Main {   public static void main(String[] args) {
    System.out.println(f(11, 13));   }
  public static int f(int n, int m)
  {
    n = n % m;
    Vector v = new Vector();     for(;;)
    {
      v.add(n);
      n *= 10;
      n = n % m;
      if(n==0) return 0;
        if(v.indexOf(n)>=0) return v.size()-v.indexOf(n); //填空
    }
  } }

题目5、打印菱形

给出菱形的边长,在控制台上打印出一个菱形来。
为了便于比对空格,我们把空格用句点代替。
当边长为8时,菱形为:
.......*
......*.*
.....*...*
....*.....*
...*.......*
..*.........*
.*...........*
*.............*
.*...........*
..*.........*
...*.......*
....*.....*
.....*...*
......*.*
.......* 下面的程序实现了这个功能,但想法有点奇怪。
请仔细分析代码,并填写划线部分缺失的代码。
public class Main {

    public static void main(String[] args) {
f(8);
} public static void f(int n) {
String s = "*";
for (int i = 0; i < 2 * n - 3; i++)
s += ".";
s += "*"; String s1 = s + "\n";
String s2 = ""; for (int i = 0; i < n - 1; i++) {
s = "." + s.substring(0, s.length() - 3) + "*"; // 填空
s1 = s + "\n" + s1;
s2 += s + "\n";
}
System.out.println(s1 + s2);
}
}

题目6、加法变乘法

题目描述

我们都知道:1+2+3+ … + 49 = 1225

现在要求你把其中两个不相邻的加号变成乘号,使得结果为2015

比如:

1+2+3+…+1011+12+…+2728+29+…+49 = 2015

就是符合要求的答案。

请你寻找另外一个可能的答案,并把位置靠前的那个乘号左边的数字提交(对于示例,就是提交10)。

注意:需要你提交的是一个整数,不要填写任何多余的内容。

public class 加法变乘法 {

public static void main(String[] args) {
int a,b,c,d;
for(int i=1;i<=49;i++) {
a=i;
b=i+1;
for(int j=i+2;j<=49;j++) {
c=j;
d=j+1;
if(a*b+c*d-(a+b)-(c+d)==790&&a!=10) {
System.out.println(a);
break;
}
}
}
}
}

题目7、牌型整数

题目描述

小明被劫持到X赌城,被迫与其他3人玩牌。

一副扑克牌(去掉大小王牌,共52张),均匀发给4个人,每个人13张。

这时,小明脑子里突然冒出一个问题:

如果不考虑花色,只考虑点数,也不考虑自己得到的牌的先后顺序,自己手里能拿到的初始牌型组合一共有多少种呢?

请填写该整数,不要填写任何多余的内容或说明文字。

public class Main{
public static int sum = 0;
public static int count = 0; public static void f(int n) { // sum是取牌的数量,n是取得牌的数字是几。这里n的范围是0到12. if(sum>13 || n>13) return ; //sum>13表示牌取多了。n>13表示一共13种牌,不可能取到第14种。
if(sum==13 ) { //只有当取牌的数量达到13张的时候,表示这次可行。
count++;
return;
} for(int i=0; i<=4; i++) { //从0到4,一共5种取法,因为有的牌可以一张不取。
sum += i;
f(n+1);
sum -= i; //回溯回去,比如上次取了一张,先减去那一张,这次可以取两张。
}
} public static void main(String[] args) {
f(0);
System.out.println(count);
}
}

题目8、移动距离

题目描述

X星球居民小区的楼房全是一样的,并且按矩阵样式排列。其楼房的编号为1,2,3…

当排满一行时,从下一行相邻的楼往反方向排号。

比如:当小区排号宽度为6时,开始情形如下:

1 2 3 4 5 6

12 11 10 9 8 7

13 14 15 …

我们的问题是:已知了两个楼号m和n,需要求出它们之间的最短移动距离(不能斜线方向移动)

输入为3个整数w m n,空格分开,都在1到10000范围内

w为排号宽度,m,n为待计算的楼号。

要求输出一个整数,表示m n 两楼间最短移动距离。

例如:

用户输入:

6 8 2

则,程序应该输出:

4

再例如:

用户输入:

4 7 20

则,程序应该输出:

5

资源约定:

峰值内存消耗(含虚拟机) < 256M

CPU消耗 < 1000ms

请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。

所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。

注意:不要使用package语句。不要使用jdk1.7及以上版本的特性。

注意:主类的名字必须是:Main,否则按无效代码处理。

    public static void main(String[] args) {
Scanner input =new Scanner(System.in);
int length = input.nextInt();
int one = input.nextInt();
int two = input.nextInt(); int ox=one/length;
int oy=one%length;
int tx=two/length;
int ty=two%length; if(one%length==0){
oy=length;
}else{
ox=ox+1;
}
if(two%length==0){
ty=length;
}else{
tx=tx+1;
}
if(ox%2==0){
oy=length-oy+1;
}
if(tx%2==0){
ty=length-ty+1;
}
System.out.println(Math.abs(ox-tx)+Math.abs(oy-ty));
}

题目9、垒骰子

题目描述

赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。

经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥!

我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。

假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。 atm想计算一下有多少种不同的可能的垒骰子方式。

两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。

由于方案数可能过多,请输出模 10^9 + 7 的结果。

不要小看了 atm 的骰子数量哦~

「输入格式」

第一行两个整数 n m

n表示骰子数目

接下来 m 行,每行两个整数 a b ,表示 a 和 b 不能紧贴在一起。

「输出格式」

一行一个数,表示答案模 10^9 + 7 的结果。

「样例输入」

2 1

1 2

「样例输出」

544

「数据范围」

对于 30% 的数据:n <= 5

对于 60% 的数据:n <= 100

对于 100% 的数据:0 < n <= 10^9, m <= 36

资源约定:

峰值内存消耗(含虚拟机) < 256M

CPU消耗 < 2000ms

请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。

所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。

注意:不要使用package语句。不要使用jdk1.7及以上版本的特性。

注意:主类的名字必须是:Main,否则按无效代码处理。

解法一:

public class 垒骰子_9_滚动数组 {
private static int a[][] = new int[10][10];//存放6个面的排斥关系,只用到数组下标1~7 private static int b[] = new int [7];//对立面
private static long count ;
private static long C = 1000000007; private static boolean check(int current,int last)
{
if(a[current][last]==1)//说明两个骰子互相排斥
{
return true;
}
return false;
} public static void main(String[] args) {
// TODO Auto-generated method stub
b[1]=4;b[4]=1;
b[2]=5;b[5]=2;
b[3]=6;b[6]=3;
int n,m,a1,a2;
Scanner in = new Scanner(System.in);
n = in.nextInt();
int num = 4;
m = in.nextInt();
for(int i = 0;i<m;i++)
{
a1 = in.nextInt();
a2 = in.nextInt();
a[a1][a2]=1;
a[a2][a1]=1;
}
//滚动数组
int dp[][] = new int[2][7];//dp[i][j]表示某一高度的骰子j面朝上的方案数
int e = 0;
for(int i=1;i<7;i++)
{
dp[e][i]=1;//初始化 已知高度为1的骰子的方案只有一种,此处忽略结果×4的情况,在下面加上
}
for(long i=2;i<=n;i++)//从第二颗骰子算,到第n颗
{
e = 1-e;
num = (int) ((num*4)%C);
for(int j = 1;j<7;j++)//遍历当前骰子各面
{
dp[e][j]=0;//初始化下一颗骰子j面朝上的方案数为0 for(int k = 1;k<7;k++)//遍历之前一颗骰子的6个面
{
if(!check(k,b[j]))//不相互排斥,k为之前下方骰子的朝上面,b[j]为当前骰子朝上面的对立面,即朝下面
{
dp[e][j] += dp[1-e][k];
}
}
dp[e][j] = (int) (dp[e][j]%C); }
}
for(int i = 1;i<7;i++)
{
count += dp[e][i];
count = count%C;
}
count = (count*num)%C;//这个地方相乘后仍然很大,是这个算法的弊端
//count = quickPow(10,33,1000000007);
System.out.println(count);
} //整数快速幂,写在这里只是为了加强记忆,这个地方没用,为后续快速矩阵幂解法做铺垫
private static long quickPow(long count2,int n,long mod)
{
long res = count2;
long ans = 1;
while(n!=0)
{
if((n&1)==1)
{
ans = (ans*res)%mod;
}
res = (res*res)%mod;
n >>= 1;
}
return ans;
}
}

解法二:

此篇java代码实现了快速矩阵幂来计算前n-1个6*6阶矩阵的乘积,最后的sum相当于传送门里博主的B矩阵求和,也就是最终没有乘4n的答案,这样就得到了第n个骰子各面朝上的所有情况,当然要记得最后乘个4n,在这里顺便也给出了整数快速幂的实现。

public class 垒骰子_9_快速矩阵幂 {
private static int mod = 1000000007; static class Matrix
{
int a[][]= new int [6][6]; public Matrix(){} public Matrix(int x)//初始化对角线元素,以构造单位矩阵
{
for(int i = 0;i<6;i++)
{
for(int j=0;j<6;j++)
{
a[i][j]= 0;
}
}
for(int i = 0;i<6;i++)
{
a[i][i] = x;
}
}
} public static int q_pow(int m,int n,int mod)//计算m^n
{
int base = m;
int ans = 1;
while(n>0)
{
if((n&1)==1)
ans = (ans*base)%mod;
base = (base*base)%mod;
n>>=1;
}
return ans;
} public static Matrix mul(Matrix m1,Matrix m2)
{
Matrix m = new Matrix();
for(int i = 0;i<6;i++)
{
for(int j = 0;j<6;j++)
{
for(int k = 0;k<6;k++)
{
m.a[i][j] += (m1.a[i][k]*m2.a[k][j])%mod;
}
}
}
return m;
}
public static Matrix q_pow(Matrix m,int n)
{
Matrix ans = new Matrix(1);//这里要变成单位矩阵
Matrix base = m;
while(n>0)
{
if((n&1)==1)
ans = mul(ans,base);
base = mul(base,base);
n>>=1;
}
return ans;
} public static void main(String[] args) {
// TODO Auto-generated method stub
int n,m,a1,a2;
int sum = 0;
Scanner in = new Scanner(System.in);
n = in.nextInt();
int num;
m = in.nextInt();
Matrix matrix = new Matrix();
for(int i = 0;i<6;i++)
{
for(int j=0;j<6;j++)
{
matrix.a[i][j]= 1;
}
}
for(int i = 0;i<m;i++)
{
a1 = in.nextInt();
a2 = in.nextInt();
matrix.a[a1-1][a2-1]=0;
matrix.a[a2-1][a1-1]=0;
}
//快速矩阵幂运算
Matrix final_matrix = q_pow(matrix,n-1);
for(int i=0;i<6;i++)
{
for(int j=0;j<6;j++)
{
sum = (sum+final_matrix.a[i][j])%mod;
}
}
num = q_pow(4,n,mod);
System.out.println((sum*num)%mod);
} }

题目10、灾后重建

题目描述

Pear市一共有N(<=50000)个居民点,居民点之间有M(<=200000)条双向道路相连。这些居民点两两之间都可以通过双向道路到达。这种情况一直持续到最近,一次严重的地震毁坏了全部M条道路。

震后,Pear打算修复其中一些道路,修理第i条道路需要Pi的时间。不过,Pear并不打算让全部的点连通,而是选择一些标号特殊的点让他们连通。

Pear有Q(<=50000)次询问,每次询问,他会选择所有编号在[l,r]之间,并且 编号 mod K = C 的点,修理一些路使得它们连通。由于所有道路的修理可以同时开工,所以完成修理的时间取决于花费时间最长的一条路,即涉及到的道路中Pi的最大值。

你能帮助Pear计算出每次询问时需要花费的最少时间么?这里询问是独立的,也就是上一个询问里的修理计划并没有付诸行动。

【输入格式】

第一行三个正整数N、M、Q,含义如题面所述。

接下来M行,每行三个正整数Xi、Yi、Pi,表示一条连接Xi和Yi的双向道路,修复需要Pi的时间。可能有自环,可能有重边。1<=Pi<=1000000。

接下来Q行,每行四个正整数Li、Ri、Ki、Ci,表示这次询问的点是[Li,Ri]区间中所有编号Mod Ki=Ci的点。保证参与询问的点至少有两个。

【输出格式】

输出Q行,每行一个正整数表示对应询问的答案。

【样例输入】

7 10 4

1 3 10

2 6 9

4 1 5

3 7 4

3 6 9

1 5 8

2 7 4

3 2 10

1 7 6

7 6 9

1 7 1 0

1 7 3 1

2 5 1 0

3 7 2 1

【样例输出】

9

6

8

8

【数据范围】

对于20%的数据,N,M,Q<=30

对于40%的数据,N,M,Q<=2000

对于100%的数据,N<=50000,M<=2*10^5,Q<=50000. Pi<=10^6. Li,Ri,Ki均在[1,N]范围内,Ci在[0,对应询问的Ki)范围内。

资源约定:

峰值内存消耗(含虚拟机) < 256M

CPU消耗 < 5000ms

请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。

所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。

注意:不要使用package语句。不要使用jdk1.7及以上版本的特性。

注意:主类的名字必须是:Main,否则按无效代码处理。

import java.util.ArrayList;
import java.util.Scanner; public class Main {
//使用Prim算法,获取输入图的最小生成树
public int[][] getPrim(int[][] value) {
int[][] result = new int[value.length][value[0].length]; //存放最终最小生成树的边权值
int[] used = new int[value.length]; //用于判断顶点是否被遍历
for(int i = 1, len = value.length;i < len;i++)
used[i] = -1; //初始化,所有顶点均未被遍历
used[1] = 1; //从顶点1开始遍历,表示顶点已经被遍历 int count = 1; //记录已经完成构造最小生成树的顶点
int len = value.length;
while(count < len) { //当已经遍历的顶点个数达到图的顶点个数len时,退出循环
int tempMax = Integer.MAX_VALUE;
int tempi = 0;
int tempj = 0;
for(int i = 1;i < len;i++) { //用于遍历已经构造的顶点
if(used[i] == -1)
continue;
for(int j = 1;j < len;j++) { //用于遍历未构造的顶点
if(used[j] == -1) {
if(value[i][j] != 0 && tempMax > value[i][j]) {
tempMax = value[i][j];
tempi = i;
tempj = j;
}
}
}
}
result[tempi][tempj] = tempMax;
result[tempj][tempi] = tempMax;
used[tempj] = 1;
count++;
}
return result;
}
//使用floyd算法获取所有顶点之间的最短路径的具体路径
public void floyd(int[][] primTree, int[][] path) {
int[][] tree = new int[primTree.length][primTree.length];
for(int i = 1;i < primTree.length;i++)
for(int j = 1;j < primTree.length;j++)
tree[i][j] = primTree[i][j];
for(int k = 1;k < primTree.length;k++) {
for(int i = 1;i < primTree.length;i++) {
for(int j = 1;j < primTree[0].length;j++) {
if(tree[i][k] != 0 && tree[k][j] != 0) {
int temp = tree[i][k] + tree[k][j];
if(tree[i][j] == 0) {
tree[i][j] = temp;
path[i][j] = k; //存放顶点i到顶点j之间的路径节点
} }
}
}
}
}
//返回a与b之间的最大值
public int max(int a, int b) {
return a > b ? a : b;
}
//根据最短路径,返回顶点start~end之间的最大权值边
public int dfsMax(int[][] primTree, int[][] path, int start, int end) {
if(path[start][end] == 0)
return primTree[start][end];
int mid = path[start][end]; //start和end的中间顶点
return max(dfsMax(primTree, path, start, mid), dfsMax(primTree, path, mid, end));
}
//根据最小生成树,返回各个顶点到其它顶点行走过程中,权值最大的一条边
public int[][] getMaxValue(int[][] primTree) {
int[][] path = new int[primTree.length][primTree[0].length];
floyd(primTree, path); //获取具体最短路径
int[][] result = new int[primTree.length][primTree[0].length];
for(int i = 1;i < primTree.length;i++) {
for(int j = 1;j < primTree.length;j++) {
if(j == i)
continue;
int max = dfsMax(primTree, path, i, j);
result[i][j] = max;
}
}
return result;
}
//打印出题意结果
public void printResult(int[][] value, int[][] result) {
int[][] primTree = getPrim(value); //获取输入图的最小生成树
int[][] maxResult = getMaxValue(primTree); //获取各个顶点到其它顶点最短路径中最大权值边
for(int i = 0;i < result.length;i++) {
int L = result[i][0];
int R = result[i][1];
int K = result[i][2];
int C = result[i][3];
ArrayList<Integer> list = new ArrayList<Integer>();
for(int j = L;j <= R;j++) {
if(j % K == C)
list.add(j);
}
int max = 0;
for(int j = 0;j < list.size();j++) {
for(int k = j + 1;k < list.size();k++) {
if(max < maxResult[list.get(j)][list.get(k)])
max = maxResult[list.get(j)][list.get(k)];
}
}
System.out.println(max);
}
return;
} public static void main(String[] args) {
Main test = new Main();
Scanner in = new Scanner(System.in);
int N = in.nextInt();
int M = in.nextInt();
int Q = in.nextInt();
int[][] value = new int[N + 1][N + 1];
for(int i = 1;i <= M;i++) {
int a = in.nextInt();
int b = in.nextInt();
int tempV = in.nextInt();
value[a][b] = tempV;
value[b][a] = tempV;
}
int[][] result = new int[Q][4];
for(int i = 0;i < Q;i++) {
result[i][0] = in.nextInt();
result[i][1] = in.nextInt();
result[i][2] = in.nextInt();
result[i][3] = in.nextInt();
}
test.printResult(value, result);
}
}

第六届蓝桥杯JavaA组省赛真题的更多相关文章

  1. 第九届蓝桥杯JavaA组省赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.分数 题目描述 1/1 + 1/2 + 1/4 + 1/8 + 1/16 + - 每项是前一项的一半,如果一共有20项, 求这个和是多 ...

  2. 第七届蓝桥杯JavaA组省赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.煤球数量 煤球数目 有一堆煤球,堆成三角棱锥形.具体: 第一层放1个, 第二层3个(排列成三角形), 第三层6个(排列成三角形), 第 ...

  3. 第六届蓝桥杯JavaC组省赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.隔行变色 隔行变色 Excel表的格子很多,为了避免把某行的数据和相邻行混淆,可以采用隔行变色的样式. 小明设计的样式为:第1行蓝色, ...

  4. 第六届蓝桥杯JavaB组省赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.三角形面积 题目描述 如图1所示.图中的所有小方格面积都是1. 那么,图中的三角形面积应该是多少呢? 请填写三角形的面积.不要填写任何 ...

  5. 第十届蓝桥杯JavaB组省赛真题

    试题 A: 组队 本题总分:5 分 [问题描述] 作为篮球队教练,你需要从以下名单中选出 1 号位至 5 号位各一名球员, 组成球队的首发阵容. 每位球员担任 1 号位至 5 号位时的评分如下表所示. ...

  6. 第十届蓝桥杯JavaC组省赛真题

    试题 A: 求和 本题总分:5 分 [问题描述] 小明对数位中含有 2.0.1.9 的数字很感兴趣,在 1 到 40 中这样的数包 括 1.2.9.10 至 32.39 和 40,共 28 个,他们的 ...

  7. 第九届蓝桥杯JavaB组省赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.第几天 题目描述 2000年的1月1日,是那一年的第1天. 那么,2000年的5月4日,是那一年的第几天? 注意:需要提交的是一个整数 ...

  8. 第九届蓝桥杯JavaC组省赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.哪天返回 题目描述 小明被不明势力劫持.后被扔到x星站再无问津.小明得知每天都有飞船飞往地球,但需要108元的船票,而他却身无分文. ...

  9. 算法笔记_214:第六届蓝桥杯软件类校赛真题(Java语言A组)

    目录 1 题目一 2 题目二 3 题目三 4 题目四 5 题目五 6 题目六 7 题目七 前言:以下代码仅供参考,若有错误欢迎指正哦~ 1 题目一 一个串的子串是指该串的一个连续的局部.如果不要求连续 ...

随机推荐

  1. transform-translate3d

    translate3d 开启硬件加速,做动效效率比 position 定位置后,改变位置,效果好,比如下拉背景放大效果,上滑的时候背景跟着上滑,可以用 translate3d.亲测效果更好,记下来

  2. Application Server was not connected before run configuration stop, reason: Unable to ping server at localhost:1099 site:blog.csdn.net

    相信你看到这个之前,已经找了很多的方法了 那么最终的解决方案应该是什么呢? 为什么之前明明跑的好好的项目,它就不行了呢?好好跑下去,它不香吗? 好了,不皮了,在我长达3个小时的奋战下,终于,自己找到了 ...

  3. git 常用 指令累积

    1.查询指定文件的修改所有修改日志git log --pretty=oneline 文件名 1. git log filename 可以看到fileName相关的commit记录2. git log ...

  4. mybatis 插入数据返回ID

    hibernate中插入数据后会返回插入的数据的ID,mybatis要使用此功能需要在配置文件中显示声明两个属性即可:

  5. CCF ISBN

    题目原文 问题描述(题目链接登陆账号有问题,要从这个链接登陆,然后点击“模拟考试”,进去找本题目)   试题编号: 201312-2 试题名称: ISBN号码 时间限制: 1.0s 内存限制: 256 ...

  6. 说一说JS的IIFE

    1. 定义IIFE: Immediately Invoked Function Expression,意为立即调用的函数表达式,也就是说,声明函数的同时立即调用这个函数.对比一下,这是不采用IIFE时 ...

  7. ql的python学习之路-day4

    集合(set) 集合主要有两种用处: 1.去除相同的元素 2.关系测试,两个列表中的元素的关系 按照‘alex’讲的自己写了源码笔记,下面就直接贴出来: #!/usr/bin/env python # ...

  8. Jenkins 插件 Role Strategy Plugin 使用

    Manage and Assign Roles 1. Manage Roles Global Role 在此处,我们划分了四种权限,分别为: admin:超级管理员角色,管理整个服务: devops: ...

  9. lb的keepalive问题

    lb的keepalive问题 0. keepalive 大家都很清楚他的用意了,就是为了减少3次握手,设置一个timeout,比如说20s ,在20s内不请求,连接还是保持着,这时候请求过来,不需要重 ...

  10. 感觉shopex现在的升级方式太慢了

    我是说产品的更新,484,485是一个经典的版本,那时候免费,shopex 系统市场占用率很高.但是485以后呢,只有小版本的更新,fxw ,ekd 都是改进版本吧,没用特别大幅度的更新.5年前,10 ...