题意:判断简单多边形内是否可以放一个半径为R的圆

思路:如果这个多边形是正多边形,令r(x,y)为圆心在(x,y)处多边形内最大圆的半径,不难发现,f(x,y)越靠近正多边形的中心,r越大,所以可以利用模拟退火法来逼近最优点。对于一般的多边形,由于可能存在多个这样的"局部最优点",所以可以选不同的点作为起点进行多若干次模拟退火即可。

模拟退火的过程:每次由原状态S生成一个新状态T,如果T比S优,那么接受这一次转移,否则以一定概率P接受这次转移,因为这样可能会跳过局部最优解而得到全局最优解。

PS:步长每次改变的系数一般设为0.8~0.9,eps不能设太高。

#pragma comment(linker, "/STACK:10240000")
#include <bits/stdc++.h>
using namespace std; #define X first
#define Y second
#define pb push_back
#define mp make_pair
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a)) typedef long long ll;
typedef pair<int, int> pii; namespace Debug {
void print(){cout<<endl;}template<typename T>
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
void print(const F f,const R...r){cout<<f<<" ";print(r...);}template<typename T>
void print(T*p, T*q){int d=p<q?:-;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
}
template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}
/* -------------------------------------------------------------------------------- */ const double eps = 1e-4;/** 设置比较精度 **/
struct Real {
double x;
double get() { return x; }
int read() { return scanf("%lf", &x); }
Real(const double &x) { this->x = x; }
Real() {}
Real abs() { return x > ? x : -x; } Real operator + (const Real &that) const { return Real(x + that.x);}
Real operator - (const Real &that) const { return Real(x - that.x);}
Real operator * (const Real &that) const { return Real(x * that.x);}
Real operator / (const Real &that) const { return Real(x / that.x);}
Real operator - () const { return Real(-x); } Real operator += (const Real &that) { return Real(x += that.x); }
Real operator -= (const Real &that) { return Real(x -= that.x); }
Real operator *= (const Real &that) { return Real(x *= that.x); }
Real operator /= (const Real &that) { return Real(x /= that.x); } bool operator < (const Real &that) const { return x - that.x <= -eps; }
bool operator > (const Real &that) const { return x - that.x >= eps; }
bool operator == (const Real &that) const { return x - that.x > -eps && x - that.x < eps; }
bool operator <= (const Real &that) const { return x - that.x < eps; }
bool operator >= (const Real &that) const { return x - that.x > -eps; } friend ostream& operator << (ostream &out, const Real &val) {
out << val.x;
return out;
}
friend istream& operator >> (istream &in, Real &val) {
in >> val.x;
return in;
}
}; struct Point {
Real x, y;
int read() { return scanf("%lf%lf", &x.x, &y.x); }
Point(const Real &x, const Real &y) { this->x = x; this->y = y; }
Point() {}
Point operator + (const Point &that) const { return Point(this->x + that.x, this->y + that.y); }
Point operator - (const Point &that) const { return Point(this->x - that.x, this->y - that.y); }
Real operator * (const Point &that) const { return x * that.x + y * that.y; }
Point operator * (const Real &that) const { return Point(x * that, y * that); }
Point operator += (const Point &that) { return Point(this->x += that.x, this->y += that.y); }
Point operator -= (const Point &that) { return Point(this->x -= that.x, this->y -= that.y); }
Point operator *= (const Real &that) { return Point(x *= that, y *= that); } bool operator == (const Point &that) const { return x == that.x && y == that.y; } Real cross(const Point &that) const { return x * that.y - y * that.x; }
Real dist() { return sqrt((x * x + y * y).get()); }
};
typedef Point Vector; struct Segment {
Point a, b;
Segment(const Point &a, const Point &b) { this->a = a; this->b = b; }
Segment() {}
bool intersect(const Segment &that) const {
Point c = that.a, d = that.b;
Vector ab = b - a, cd = d - c, ac = c - a, ad = d - a, ca = a - c, cb = b - c;
return ab.cross(ac) * ab.cross(ad) < && cd.cross(ca) * cd.cross(cb) < ;
}
Point getLineIntersection(const Segment &that) const {
Vector u = a - that.a, v = b - a, w = that.b - that.a;
Real t = w.cross(u) / v.cross(w);
return a + v * t;
}
Real Distance(Point P) {
Point A = a, B = b;
if (A == B) return (P - A).dist();
Vector v1 = B - A, v2 = P - A, v3 = P - B;
if (v1 * v2 < ) return v2.dist();
if (v1 * v3 > ) return v3.dist();
return v1.cross(v2).abs() / v1.dist();
}
}; const int maxn = ;
double PI = acos(-1.0); Point p[maxn];
int n; Real getAngel(Point o, Point a, Point b) {
a -= o;
b -= o;
Real ans = acos((a * b / a.dist() / b.dist()).get());
return a.cross(b) <= ? ans : -ans;
} bool inPolygon(Point o) {
Real total = ;
for (int i = ; i < n; i ++) {
total += getAngel(o, p[i], p[(i + ) % n]);
}
return total.abs() > PI;
} Real getR(Point o) {
Real ans = 1e9;
for (int i = ; i < n; i ++) {
Segment seg(p[i], p[(i + ) % n]);
umin(ans, seg.Distance(o));
}
return ans;
} int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
while (cin >> n, n) {
p[].read();
Real maxx = p[].x, minx = p[].x, maxy = p[].y, miny = p[].y;
for (int i = ; i < n; i ++) {
p[i].read();
umax(maxx, p[i].x);
umin(minx, p[i].x);
umax(maxy, p[i].y);
umin(miny, p[i].y);
}
Real R;
R.read();
Point a(minx, miny), b(maxx, maxy);
bool ok = false;
for (int i = ; !ok && i < n; i ++) {
Real deta = (b - a).dist() / ;
Point O = (p[i] + p[(i + ) % n]) * 0.5;
int cnt = ;
while (!ok && deta > && cnt < ) {
for (int j = ; ; j ++) {
double randnum = rand();
Point newp(O.x + deta * sin(randnum), O.y + deta * cos(randnum));
if (!inPolygon(newp)) continue;
Real buf = getR(newp);
if (buf > getR(O) || j > ) { /** 这里考虑了概率因素 **/
if (buf >= R) ok = true;
O = newp;
break;
}
}
deta *= 0.8;
cnt ++;
}
}
puts(ok? "Yes" : "No");
} }

[hdu3644 A Chocolate Manufacturer's Problem]模拟退火,简单多边形内最大圆的更多相关文章

  1. HDU - 3644:A Chocolate Manufacturer's Problem(模拟退火, 求多边形内最大圆半径)

    pro:给定一个N边形,然后给半径为R的圆,问是否可以放进去.  问题转化为多边形的最大内接圆半径.(N<50): sol:乍一看,不就是二分+半平面交验证是否有核的板子题吗. 然而事情并没有那 ...

  2. Codeforces Beta Round #2 C. Commentator problem 模拟退火

    C. Commentator problem 题目连接: http://www.codeforces.com/contest/2/problem/C Description The Olympic G ...

  3. How Cocoa Beans Grow And Are Harvested Into Chocolate

    What is Cocoa Beans Do you like chocolate? Most people do. The smooth, brown candy is deliciously sw ...

  4. bzoj2965

    http://www.lydsy.com/JudgeOnline/problem.php?id=2965 http://www.tsinsen.com/A1385 平面图网络流. 首先我们要将平面图转 ...

  5. bzoj4948: World Final2017 A

    求简单多边形内的最长线段长度 显然存在一组最优解,使其所在直线经过多边形的两个端点,枚举这两个端点,求出直线和多边形的有效交点,从而得出直线有哪些部分在多边形内(含边界). 由于多边形的一些边可能与直 ...

  6. 21天学习caffe(一)

    ubuntu环境安装caffe1 安装依赖 apt-get install libatlas-base-dev apt-get install python-dev apt-get install l ...

  7. 【智能算法】用模拟退火(SA, Simulated Annealing)算法解决旅行商问题 (TSP, Traveling Salesman Problem)

    喜欢的话可以扫码关注我们的公众号哦,更多精彩尽在微信公众号[程序猿声] 文章声明 此文章部分资料和代码整合自网上,来源太多已经无法查明出处,如侵犯您的权利,请联系我删除. 01 什么是旅行商问题(TS ...

  8. Codeforces Problem 598E - Chocolate Bar

    Chocolate Bar 题意: 有一个n*m(1<= n,m<=30)的矩形巧克力,每次能横向或者是纵向切,且每次切的花费为所切边长的平方,问你最后得到k个单位巧克力( k <= ...

  9. 【模拟退火】Petrozavodsk Winter Training Camp 2017 Day 1: Jagiellonian U Contest, Monday, January 30, 2017 Problem F. Factory

    让你在平面上取一个点,使得其到给定的所有点的距离和最小. 就是“费马点”. 模拟退火……日后学习一下,这是从网上扒的,先存下. #include<iostream> #include< ...

随机推荐

  1. Java 反射 -- 获取泛型类型

    先写一个类: public class Demo03 { public void test01(Map<String, User> map, List<User> list) ...

  2. Java 多线程 -- lambda 表达式推导

    jdk 8 开始 java 引入了lambda 表达式. lambda适用场景: 1.接口或父类 2.接口或父类只有一个方法 我们从多线程写法来推导一下: 1.外部类写法: package com.x ...

  3. 个人理解Linux文件权限--以前记录的,根据鸟哥的第二版去解释的

    ps:鸟哥的第三版私房菜印刷的有问题 上面的意思:d指的是目录 档案拥有者权限:r可读w可写,x,可运行, 同群组的权限:r可读,这段有个-号,表示不可写,x表示可运行 其他非本群组的权限:r可读,这 ...

  4. 哈希Hash定义

    Hash,一般翻译做"散列”,也有直接音译为"哈希"的,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值. ...

  5. Openstack Swift 创建用户和 container

    openstack user create --domain default  --password-prompt [用户名];openstack role add --project admin - ...

  6. [redis]SDS和链表

    一.SDS 1.SDS结构体 redis3.2之前:不管buf的字节数有多少,都用 4字节的len来储存长度,对于只存短字符串那么优点浪费空间,比如只存 name,则len=4 则只需要一个字节8位即 ...

  7. java 8中 predicate chain的使用

    目录 简介 基本使用 使用多个Filter 使用复合Predicate 组合Predicate Predicate的集合操作 总结 java 8中 predicate chain的使用 简介 Pred ...

  8. 单源最短路问题--朴素Dijkstra & 堆优化Dijkstra

    许久没有写博客,更新一下~ Dijkstra两种典型写法 1. 朴素Dijkstra     时间复杂度O(N^2)       适用:稠密图(点较少,分布密集) #include <cstdi ...

  9. 【Linux网络基础】TCP/IP 协议簇(各个常见协议介绍)

    一.应用层协议 1. FTP   协议所在层次:应用层协议 名称:FTP协议 协议端口:20,21 协议说明: FTP(File Transfer Protocol,文件传输协议)是TCP/IP协议组 ...

  10. Ubuntu登陆时忘记密码怎么办

    有时候由于各种原因,用户会忘记自己登陆Ubuntu的登陆密码,这个时候我们能怎么办呢? 第一步:先重启电脑,开机时长按shift键,进入grub菜单: 第二步:按“e”键编辑启动项,显示如下图,将下图 ...