题意:判断简单多边形内是否可以放一个半径为R的圆

思路:如果这个多边形是正多边形,令r(x,y)为圆心在(x,y)处多边形内最大圆的半径,不难发现,f(x,y)越靠近正多边形的中心,r越大,所以可以利用模拟退火法来逼近最优点。对于一般的多边形,由于可能存在多个这样的"局部最优点",所以可以选不同的点作为起点进行多若干次模拟退火即可。

模拟退火的过程:每次由原状态S生成一个新状态T,如果T比S优,那么接受这一次转移,否则以一定概率P接受这次转移,因为这样可能会跳过局部最优解而得到全局最优解。

PS:步长每次改变的系数一般设为0.8~0.9,eps不能设太高。

#pragma comment(linker, "/STACK:10240000")
#include <bits/stdc++.h>
using namespace std; #define X first
#define Y second
#define pb push_back
#define mp make_pair
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a)) typedef long long ll;
typedef pair<int, int> pii; namespace Debug {
void print(){cout<<endl;}template<typename T>
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
void print(const F f,const R...r){cout<<f<<" ";print(r...);}template<typename T>
void print(T*p, T*q){int d=p<q?:-;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
}
template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}
/* -------------------------------------------------------------------------------- */ const double eps = 1e-4;/** 设置比较精度 **/
struct Real {
double x;
double get() { return x; }
int read() { return scanf("%lf", &x); }
Real(const double &x) { this->x = x; }
Real() {}
Real abs() { return x > ? x : -x; } Real operator + (const Real &that) const { return Real(x + that.x);}
Real operator - (const Real &that) const { return Real(x - that.x);}
Real operator * (const Real &that) const { return Real(x * that.x);}
Real operator / (const Real &that) const { return Real(x / that.x);}
Real operator - () const { return Real(-x); } Real operator += (const Real &that) { return Real(x += that.x); }
Real operator -= (const Real &that) { return Real(x -= that.x); }
Real operator *= (const Real &that) { return Real(x *= that.x); }
Real operator /= (const Real &that) { return Real(x /= that.x); } bool operator < (const Real &that) const { return x - that.x <= -eps; }
bool operator > (const Real &that) const { return x - that.x >= eps; }
bool operator == (const Real &that) const { return x - that.x > -eps && x - that.x < eps; }
bool operator <= (const Real &that) const { return x - that.x < eps; }
bool operator >= (const Real &that) const { return x - that.x > -eps; } friend ostream& operator << (ostream &out, const Real &val) {
out << val.x;
return out;
}
friend istream& operator >> (istream &in, Real &val) {
in >> val.x;
return in;
}
}; struct Point {
Real x, y;
int read() { return scanf("%lf%lf", &x.x, &y.x); }
Point(const Real &x, const Real &y) { this->x = x; this->y = y; }
Point() {}
Point operator + (const Point &that) const { return Point(this->x + that.x, this->y + that.y); }
Point operator - (const Point &that) const { return Point(this->x - that.x, this->y - that.y); }
Real operator * (const Point &that) const { return x * that.x + y * that.y; }
Point operator * (const Real &that) const { return Point(x * that, y * that); }
Point operator += (const Point &that) { return Point(this->x += that.x, this->y += that.y); }
Point operator -= (const Point &that) { return Point(this->x -= that.x, this->y -= that.y); }
Point operator *= (const Real &that) { return Point(x *= that, y *= that); } bool operator == (const Point &that) const { return x == that.x && y == that.y; } Real cross(const Point &that) const { return x * that.y - y * that.x; }
Real dist() { return sqrt((x * x + y * y).get()); }
};
typedef Point Vector; struct Segment {
Point a, b;
Segment(const Point &a, const Point &b) { this->a = a; this->b = b; }
Segment() {}
bool intersect(const Segment &that) const {
Point c = that.a, d = that.b;
Vector ab = b - a, cd = d - c, ac = c - a, ad = d - a, ca = a - c, cb = b - c;
return ab.cross(ac) * ab.cross(ad) < && cd.cross(ca) * cd.cross(cb) < ;
}
Point getLineIntersection(const Segment &that) const {
Vector u = a - that.a, v = b - a, w = that.b - that.a;
Real t = w.cross(u) / v.cross(w);
return a + v * t;
}
Real Distance(Point P) {
Point A = a, B = b;
if (A == B) return (P - A).dist();
Vector v1 = B - A, v2 = P - A, v3 = P - B;
if (v1 * v2 < ) return v2.dist();
if (v1 * v3 > ) return v3.dist();
return v1.cross(v2).abs() / v1.dist();
}
}; const int maxn = ;
double PI = acos(-1.0); Point p[maxn];
int n; Real getAngel(Point o, Point a, Point b) {
a -= o;
b -= o;
Real ans = acos((a * b / a.dist() / b.dist()).get());
return a.cross(b) <= ? ans : -ans;
} bool inPolygon(Point o) {
Real total = ;
for (int i = ; i < n; i ++) {
total += getAngel(o, p[i], p[(i + ) % n]);
}
return total.abs() > PI;
} Real getR(Point o) {
Real ans = 1e9;
for (int i = ; i < n; i ++) {
Segment seg(p[i], p[(i + ) % n]);
umin(ans, seg.Distance(o));
}
return ans;
} int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
while (cin >> n, n) {
p[].read();
Real maxx = p[].x, minx = p[].x, maxy = p[].y, miny = p[].y;
for (int i = ; i < n; i ++) {
p[i].read();
umax(maxx, p[i].x);
umin(minx, p[i].x);
umax(maxy, p[i].y);
umin(miny, p[i].y);
}
Real R;
R.read();
Point a(minx, miny), b(maxx, maxy);
bool ok = false;
for (int i = ; !ok && i < n; i ++) {
Real deta = (b - a).dist() / ;
Point O = (p[i] + p[(i + ) % n]) * 0.5;
int cnt = ;
while (!ok && deta > && cnt < ) {
for (int j = ; ; j ++) {
double randnum = rand();
Point newp(O.x + deta * sin(randnum), O.y + deta * cos(randnum));
if (!inPolygon(newp)) continue;
Real buf = getR(newp);
if (buf > getR(O) || j > ) { /** 这里考虑了概率因素 **/
if (buf >= R) ok = true;
O = newp;
break;
}
}
deta *= 0.8;
cnt ++;
}
}
puts(ok? "Yes" : "No");
} }

[hdu3644 A Chocolate Manufacturer's Problem]模拟退火,简单多边形内最大圆的更多相关文章

  1. HDU - 3644:A Chocolate Manufacturer's Problem(模拟退火, 求多边形内最大圆半径)

    pro:给定一个N边形,然后给半径为R的圆,问是否可以放进去.  问题转化为多边形的最大内接圆半径.(N<50): sol:乍一看,不就是二分+半平面交验证是否有核的板子题吗. 然而事情并没有那 ...

  2. Codeforces Beta Round #2 C. Commentator problem 模拟退火

    C. Commentator problem 题目连接: http://www.codeforces.com/contest/2/problem/C Description The Olympic G ...

  3. How Cocoa Beans Grow And Are Harvested Into Chocolate

    What is Cocoa Beans Do you like chocolate? Most people do. The smooth, brown candy is deliciously sw ...

  4. bzoj2965

    http://www.lydsy.com/JudgeOnline/problem.php?id=2965 http://www.tsinsen.com/A1385 平面图网络流. 首先我们要将平面图转 ...

  5. bzoj4948: World Final2017 A

    求简单多边形内的最长线段长度 显然存在一组最优解,使其所在直线经过多边形的两个端点,枚举这两个端点,求出直线和多边形的有效交点,从而得出直线有哪些部分在多边形内(含边界). 由于多边形的一些边可能与直 ...

  6. 21天学习caffe(一)

    ubuntu环境安装caffe1 安装依赖 apt-get install libatlas-base-dev apt-get install python-dev apt-get install l ...

  7. 【智能算法】用模拟退火(SA, Simulated Annealing)算法解决旅行商问题 (TSP, Traveling Salesman Problem)

    喜欢的话可以扫码关注我们的公众号哦,更多精彩尽在微信公众号[程序猿声] 文章声明 此文章部分资料和代码整合自网上,来源太多已经无法查明出处,如侵犯您的权利,请联系我删除. 01 什么是旅行商问题(TS ...

  8. Codeforces Problem 598E - Chocolate Bar

    Chocolate Bar 题意: 有一个n*m(1<= n,m<=30)的矩形巧克力,每次能横向或者是纵向切,且每次切的花费为所切边长的平方,问你最后得到k个单位巧克力( k <= ...

  9. 【模拟退火】Petrozavodsk Winter Training Camp 2017 Day 1: Jagiellonian U Contest, Monday, January 30, 2017 Problem F. Factory

    让你在平面上取一个点,使得其到给定的所有点的距离和最小. 就是“费马点”. 模拟退火……日后学习一下,这是从网上扒的,先存下. #include<iostream> #include< ...

随机推荐

  1. scheduler_default_filters 详解

    Filter scheduler 是 nova-scheduler 默认的调度器,调度过程分为两步:     通过过滤器(filter)选择满足条件的计算节点(运行 nova-compute) 通过权 ...

  2. Python软件定时器APScheduler使用【软件定时器,非操作系统定时器,软件可控的定时器】【用途:定时同步数据库和缓存等】【刘新宇】

    APScheduler使用 APScheduler (advanceded python scheduler)是一款Python开发的定时任务工具. 文档地址 https://apscheduler. ...

  3. 基于layui,Jquery 表格动态编辑 设置 编辑值为 int 或者 double 类型及默认值

    首先先推荐大家在看这篇笔记时,阅读过我写的这篇 Layui表格编辑[不依赖Layui的动态table加载] 阅读过上面那篇笔记之后呢,才能更好的理解我现在所要说的这个东西 接下来废话不多说,上代码. ...

  4. 23-Java-Spring框架(一)

    一.Spring框架了解 Spring框架是一个开源的框架,为JavaEE应用提供多方面的解决方案,用于简化企业级应用的开发,相当于是一种容器,可以集成其他框架(结构图如下). 上图反映了框架引包的依 ...

  5. 二叉树中两节点的最近公共父节点(360的c++一面问题)

    面试官的问题:写一个函数  TreeNode* Find(TreeNode* root, TreeNode* p, TreeNode* q) ,返回二叉树中p和q的最近公共父节点. 本人反应:当时有点 ...

  6. WFS: postgresql(postgis)和shp文件查询效率对比

    对GeoServer上的WFS的各种数据源查询效率感兴趣,做个测试.本次测试了Postgresql.geopackage.shp文件三种数据源的查询效率,无论是本机还是服务器环境,pg存储查询效率都比 ...

  7. 2019-2020-1 20199310《Linux内核原理与分析》第二周作业

    1.问题描述 众所周知,计算机是20世纪最伟大的发明之一,计算机是如何工作的呢?本文主要通过计算机的组成结构和工作原理,以及汇编代码工作过程来进行详细叙述. 2.解决过程 2.1 冯·诺依曼体系结构 ...

  8. 2019-2020-1 20199326《Linux内核原理与分析》第七周作业

    实验内容:分析Linux内核创建一个新进程的过程 初始化Menu Os,输入fork可以看到menuos触发了一个fork系统调用 再开一个shell,进入调试模式,设置几个断点sys_clone,d ...

  9. python25之进制转换

    一.进制转换函数 bin():将十进制转换为二进制 oct():将十进制转换为八进制 hex():将十进制转换为十六进制 >>> x=1234>>> bin(x)' ...

  10. java中Future的使用

    文章目录 创建Future 从Future获取结果 取消Future 多线程环境中运行 java中Future的使用 Future是java 1.5引入的一个interface,可以方便的用于异步结果 ...