题意:判断简单多边形内是否可以放一个半径为R的圆

思路:如果这个多边形是正多边形,令r(x,y)为圆心在(x,y)处多边形内最大圆的半径,不难发现,f(x,y)越靠近正多边形的中心,r越大,所以可以利用模拟退火法来逼近最优点。对于一般的多边形,由于可能存在多个这样的"局部最优点",所以可以选不同的点作为起点进行多若干次模拟退火即可。

模拟退火的过程:每次由原状态S生成一个新状态T,如果T比S优,那么接受这一次转移,否则以一定概率P接受这次转移,因为这样可能会跳过局部最优解而得到全局最优解。

PS:步长每次改变的系数一般设为0.8~0.9,eps不能设太高。

#pragma comment(linker, "/STACK:10240000")
#include <bits/stdc++.h>
using namespace std; #define X first
#define Y second
#define pb push_back
#define mp make_pair
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a)) typedef long long ll;
typedef pair<int, int> pii; namespace Debug {
void print(){cout<<endl;}template<typename T>
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
void print(const F f,const R...r){cout<<f<<" ";print(r...);}template<typename T>
void print(T*p, T*q){int d=p<q?:-;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
}
template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}
/* -------------------------------------------------------------------------------- */ const double eps = 1e-4;/** 设置比较精度 **/
struct Real {
double x;
double get() { return x; }
int read() { return scanf("%lf", &x); }
Real(const double &x) { this->x = x; }
Real() {}
Real abs() { return x > ? x : -x; } Real operator + (const Real &that) const { return Real(x + that.x);}
Real operator - (const Real &that) const { return Real(x - that.x);}
Real operator * (const Real &that) const { return Real(x * that.x);}
Real operator / (const Real &that) const { return Real(x / that.x);}
Real operator - () const { return Real(-x); } Real operator += (const Real &that) { return Real(x += that.x); }
Real operator -= (const Real &that) { return Real(x -= that.x); }
Real operator *= (const Real &that) { return Real(x *= that.x); }
Real operator /= (const Real &that) { return Real(x /= that.x); } bool operator < (const Real &that) const { return x - that.x <= -eps; }
bool operator > (const Real &that) const { return x - that.x >= eps; }
bool operator == (const Real &that) const { return x - that.x > -eps && x - that.x < eps; }
bool operator <= (const Real &that) const { return x - that.x < eps; }
bool operator >= (const Real &that) const { return x - that.x > -eps; } friend ostream& operator << (ostream &out, const Real &val) {
out << val.x;
return out;
}
friend istream& operator >> (istream &in, Real &val) {
in >> val.x;
return in;
}
}; struct Point {
Real x, y;
int read() { return scanf("%lf%lf", &x.x, &y.x); }
Point(const Real &x, const Real &y) { this->x = x; this->y = y; }
Point() {}
Point operator + (const Point &that) const { return Point(this->x + that.x, this->y + that.y); }
Point operator - (const Point &that) const { return Point(this->x - that.x, this->y - that.y); }
Real operator * (const Point &that) const { return x * that.x + y * that.y; }
Point operator * (const Real &that) const { return Point(x * that, y * that); }
Point operator += (const Point &that) { return Point(this->x += that.x, this->y += that.y); }
Point operator -= (const Point &that) { return Point(this->x -= that.x, this->y -= that.y); }
Point operator *= (const Real &that) { return Point(x *= that, y *= that); } bool operator == (const Point &that) const { return x == that.x && y == that.y; } Real cross(const Point &that) const { return x * that.y - y * that.x; }
Real dist() { return sqrt((x * x + y * y).get()); }
};
typedef Point Vector; struct Segment {
Point a, b;
Segment(const Point &a, const Point &b) { this->a = a; this->b = b; }
Segment() {}
bool intersect(const Segment &that) const {
Point c = that.a, d = that.b;
Vector ab = b - a, cd = d - c, ac = c - a, ad = d - a, ca = a - c, cb = b - c;
return ab.cross(ac) * ab.cross(ad) < && cd.cross(ca) * cd.cross(cb) < ;
}
Point getLineIntersection(const Segment &that) const {
Vector u = a - that.a, v = b - a, w = that.b - that.a;
Real t = w.cross(u) / v.cross(w);
return a + v * t;
}
Real Distance(Point P) {
Point A = a, B = b;
if (A == B) return (P - A).dist();
Vector v1 = B - A, v2 = P - A, v3 = P - B;
if (v1 * v2 < ) return v2.dist();
if (v1 * v3 > ) return v3.dist();
return v1.cross(v2).abs() / v1.dist();
}
}; const int maxn = ;
double PI = acos(-1.0); Point p[maxn];
int n; Real getAngel(Point o, Point a, Point b) {
a -= o;
b -= o;
Real ans = acos((a * b / a.dist() / b.dist()).get());
return a.cross(b) <= ? ans : -ans;
} bool inPolygon(Point o) {
Real total = ;
for (int i = ; i < n; i ++) {
total += getAngel(o, p[i], p[(i + ) % n]);
}
return total.abs() > PI;
} Real getR(Point o) {
Real ans = 1e9;
for (int i = ; i < n; i ++) {
Segment seg(p[i], p[(i + ) % n]);
umin(ans, seg.Distance(o));
}
return ans;
} int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
while (cin >> n, n) {
p[].read();
Real maxx = p[].x, minx = p[].x, maxy = p[].y, miny = p[].y;
for (int i = ; i < n; i ++) {
p[i].read();
umax(maxx, p[i].x);
umin(minx, p[i].x);
umax(maxy, p[i].y);
umin(miny, p[i].y);
}
Real R;
R.read();
Point a(minx, miny), b(maxx, maxy);
bool ok = false;
for (int i = ; !ok && i < n; i ++) {
Real deta = (b - a).dist() / ;
Point O = (p[i] + p[(i + ) % n]) * 0.5;
int cnt = ;
while (!ok && deta > && cnt < ) {
for (int j = ; ; j ++) {
double randnum = rand();
Point newp(O.x + deta * sin(randnum), O.y + deta * cos(randnum));
if (!inPolygon(newp)) continue;
Real buf = getR(newp);
if (buf > getR(O) || j > ) { /** 这里考虑了概率因素 **/
if (buf >= R) ok = true;
O = newp;
break;
}
}
deta *= 0.8;
cnt ++;
}
}
puts(ok? "Yes" : "No");
} }

[hdu3644 A Chocolate Manufacturer's Problem]模拟退火,简单多边形内最大圆的更多相关文章

  1. HDU - 3644:A Chocolate Manufacturer's Problem(模拟退火, 求多边形内最大圆半径)

    pro:给定一个N边形,然后给半径为R的圆,问是否可以放进去.  问题转化为多边形的最大内接圆半径.(N<50): sol:乍一看,不就是二分+半平面交验证是否有核的板子题吗. 然而事情并没有那 ...

  2. Codeforces Beta Round #2 C. Commentator problem 模拟退火

    C. Commentator problem 题目连接: http://www.codeforces.com/contest/2/problem/C Description The Olympic G ...

  3. How Cocoa Beans Grow And Are Harvested Into Chocolate

    What is Cocoa Beans Do you like chocolate? Most people do. The smooth, brown candy is deliciously sw ...

  4. bzoj2965

    http://www.lydsy.com/JudgeOnline/problem.php?id=2965 http://www.tsinsen.com/A1385 平面图网络流. 首先我们要将平面图转 ...

  5. bzoj4948: World Final2017 A

    求简单多边形内的最长线段长度 显然存在一组最优解,使其所在直线经过多边形的两个端点,枚举这两个端点,求出直线和多边形的有效交点,从而得出直线有哪些部分在多边形内(含边界). 由于多边形的一些边可能与直 ...

  6. 21天学习caffe(一)

    ubuntu环境安装caffe1 安装依赖 apt-get install libatlas-base-dev apt-get install python-dev apt-get install l ...

  7. 【智能算法】用模拟退火(SA, Simulated Annealing)算法解决旅行商问题 (TSP, Traveling Salesman Problem)

    喜欢的话可以扫码关注我们的公众号哦,更多精彩尽在微信公众号[程序猿声] 文章声明 此文章部分资料和代码整合自网上,来源太多已经无法查明出处,如侵犯您的权利,请联系我删除. 01 什么是旅行商问题(TS ...

  8. Codeforces Problem 598E - Chocolate Bar

    Chocolate Bar 题意: 有一个n*m(1<= n,m<=30)的矩形巧克力,每次能横向或者是纵向切,且每次切的花费为所切边长的平方,问你最后得到k个单位巧克力( k <= ...

  9. 【模拟退火】Petrozavodsk Winter Training Camp 2017 Day 1: Jagiellonian U Contest, Monday, January 30, 2017 Problem F. Factory

    让你在平面上取一个点,使得其到给定的所有点的距离和最小. 就是“费马点”. 模拟退火……日后学习一下,这是从网上扒的,先存下. #include<iostream> #include< ...

随机推荐

  1. MySQL系列操作

    Linux环境下安装使用MySQL Portal 数据备份&恢复 Portal

  2. 1. git 本地给远程仓库创建分支 三步法

    命令如下: 1:本地创建分支dev 1 2 Peg@PEG-PC /D/home/myself/Symfony (master) $ git branch dev 2:下面是把本地分支提交到远程仓库 ...

  3. sql查询慢 查找

    SELECT creation_time N'语句编译时间' ,last_execution_time N'上次执行时间' ,total_physical_reads N'物理读取总次数' ,tota ...

  4. MVC-过滤器-权限认证

    过滤器主要基于特性,aop来实现对MVC管道中插入其他处理逻辑.比如,访问网站,需要检查是否已经登陆,若没登陆跳入登陆界面. 样例: 方法注册 执行效果 当不符合认证时: 上面是方法注册特性.还有类注 ...

  5. Python神库分享之geoip2 IP定位库

    先安装这两个 pip install python-geoip-geolite2 -i https://pypi.douban.com/simple pip install geoip2 然后下载资源 ...

  6. Java中的匿名对象代码实例

    /* 匿名对象:就是没有名字的对象. 匿名对象的应用场景: A:调用场景,仅仅只调用一次的时候. 注意:调用多次的时候,不合适. 那么,这种匿名调用有什么好处吗? 有,匿名对象调用完毕就是垃圾.可以被 ...

  7. php最快捷的插入数据,3000万仅需5秒

    <?phpheader('content-type:text/html;charset=utf-8');//采集数据$url="http://www.keepclub.com/club ...

  8. Shell中的here文档

    1.名词解释: 以下是维基百科解释: here文档[1],又称作heredoc.hereis.here-字串或here-脚本,是一种在命令行shell(如sh.csh.ksh.bash.PowerSh ...

  9. Scala教程之:PartialFunction

    Scala中有一个很有用的traits叫PartialFunction,我看了下别人的翻译叫做偏函数,但是我觉得部分函数更加确切. 那么PartialFunction是做什么用的呢?简单点说Parti ...

  10. http 之 CORS简介

    什么是CORS? CORS:跨域资源共享.是一种机制. 用处? 它使用额外的 HTTP 头来告诉浏览器  让运行在一个 origin (domain) 上的Web应用被准许访问来自不同源服务器上的指定 ...