这一次搞懂Spring代理创建及AOP链式调用过程
文章目录
前言
AOP,也就是面向切面编程,它可以将公共的代码抽离出来,动态的织入到目标类、目标方法中,大大提高我们编程的效率,也使程序变得更加优雅。如事务、操作日志等都可以使用AOP实现。这种织入可以是在运行期动态生成代理对象实现,也可以在编译期、类加载时期静态织入到代码中。而Spring正是通过第一种方法实现,且在代理类的生成上也有两种方式:JDK Proxy和CGLIB,默认当类实现了接口时使用前者,否则使用后者;另外Spring AOP只能实现对方法的增强。
正文
基本概念
AOP的术语很多,虽然不清楚术语我们也能很熟练地使用AOP,但是要理解分析源码,术语就需要深刻体会其含义。
- 增强(Advice):就是我们想要额外增加的功能
- 目标对象(Target):就是我们想要增强的目标类,如果没有AOP,我们需要在每个目标对象中实现日志、事务管理等非业务逻辑
- 连接点(JoinPoint):程序执行时的特定时机,如方法执行前、后以及抛出异常后等等。
- 切点(Pointcut):连接点的导航,我们如何找到目标对象呢?切点的作用就在于此,在Spring中就是匹配表达式。
- 引介(Introduction):引介是一种特殊的增强,它为类添加一些属性和方法。这样,即使一个业务类原本没有实现某个接口,通过AOP的引介功能,我们可以动态地为该业务类添加接口的实现逻辑,让业务类成为这个接口的实现类。
- 织入(Weaving):即如何将增强添加到目标对象的连接点上,有动态(运行期生成代理)、静态(编译期、类加载时期)两种方式。
- 代理(Proxy):目标对象被织入增强后,就会产生一个代理对象,该对象可能是和原对象实现了同样的一个接口(JDK),也可能是原对象的子类(CGLIB)。
- 切面(Aspect、Advisor):切面由切点和增强组成,包含了这两者的定义。
代理对象的创建
在熟悉了AOP术语后,下面就来看看Spring是如何创建代理对象的,是否还记得上一篇提到的AOP的入口呢?在AbstractAutowireCapableBeanFactory类的applyBeanPostProcessorsAfterInitialization方法中循环调用了BeanPostProcessor的postProcessAfterInitialization方法,其中一个就是我们创建代理对象的入口。这里是Bean实例化完成去创建代理对象,理所当然应该这样,但实际上在Bean实例化之前调用了一个resolveBeforeInstantiation方法,这里实际上我们也是有机会可以提前创建代理对象的,这里放到最后来分析,先来看主入口,进入到AbstractAutoProxyCreator类中:
public Object postProcessAfterInitialization(@Nullable Object bean, String beanName) {
if (bean != null) {
Object cacheKey = getCacheKey(bean.getClass(), beanName);
if (!this.earlyProxyReferences.contains(cacheKey)) {
return wrapIfNecessary(bean, beanName, cacheKey);
}
}
return bean;
}
protected Object wrapIfNecessary(Object bean, String beanName, Object cacheKey) {
//创建当前bean的代理,如果这个bean有advice的话,重点看
// Create proxy if we have advice.
Object[] specificInterceptors = getAdvicesAndAdvisorsForBean(bean.getClass(), beanName, null);
//如果有切面,则生成该bean的代理
if (specificInterceptors != DO_NOT_PROXY) {
this.advisedBeans.put(cacheKey, Boolean.TRUE);
//把被代理对象bean实例封装到SingletonTargetSource对象中
Object proxy = createProxy(
bean.getClass(), beanName, specificInterceptors, new SingletonTargetSource(bean));
this.proxyTypes.put(cacheKey, proxy.getClass());
return proxy;
}
this.advisedBeans.put(cacheKey, Boolean.FALSE);
return bean;
}
先从缓存中拿,没有则调用wrapIfNecessary方法创建。在这个方法里面主要看两个地方:getAdvicesAndAdvisorsForBean和createProxy。简单一句话概括就是先扫描后创建,问题是扫描什么呢?你可以先结合上面的概念思考下,换你会怎么做。进入到子类AbstractAdvisorAutoProxyCreator的getAdvicesAndAdvisorsForBean方法中:
protected Object[] getAdvicesAndAdvisorsForBean(
Class<?> beanClass, String beanName, @Nullable TargetSource targetSource) {
//找到合格的切面
List<Advisor> advisors = findEligibleAdvisors(beanClass, beanName);
if (advisors.isEmpty()) {
return DO_NOT_PROXY;
}
return advisors.toArray();
}
protected List<Advisor> findEligibleAdvisors(Class<?> beanClass, String beanName) {
//找到候选的切面,其实就是一个寻找有@Aspectj注解的过程,把工程中所有有这个注解的类封装成Advisor返回
List<Advisor> candidateAdvisors = findCandidateAdvisors();
//判断候选的切面是否作用在当前beanClass上面,就是一个匹配过程。现在就是一个匹配
List<Advisor> eligibleAdvisors = findAdvisorsThatCanApply(candidateAdvisors, beanClass, beanName);
extendAdvisors(eligibleAdvisors);
if (!eligibleAdvisors.isEmpty()) {
//对有@Order@Priority进行排序
eligibleAdvisors = sortAdvisors(eligibleAdvisors);
}
return eligibleAdvisors;
}
在findEligibleAdvisors方法中可以看到有两个步骤,第一先找到所有的切面,即扫描所有带有@Aspect注解的类,并将其中的切点(表达式)和增强封装为切面,扫描完成后,自然是要判断哪些切面能够连接到当前Bean实例上。下面一步步来分析,首先是扫描过程,进入到AnnotationAwareAspectJAutoProxyCreator类中:
protected List<Advisor> findCandidateAdvisors() {
// 先通过父类AbstractAdvisorAutoProxyCreator扫描,这里不重要
List<Advisor> advisors = super.findCandidateAdvisors();
// 主要看这里
if (this.aspectJAdvisorsBuilder != null) {
advisors.addAll(this.aspectJAdvisorsBuilder.buildAspectJAdvisors());
}
return advisors;
}
这里委托给了BeanFactoryAspectJAdvisorsBuilderAdapter类,并调用其父类的buildAspectJAdvisors方法创建切面对象:
public List<Advisor> buildAspectJAdvisors() {
List<String> aspectNames = this.aspectBeanNames;
if (aspectNames == null) {
synchronized (this) {
aspectNames = this.aspectBeanNames;
if (aspectNames == null) {
List<Advisor> advisors = new ArrayList<>();
aspectNames = new ArrayList<>();
//获取spring容器中的所有bean的名称BeanName
String[] beanNames = BeanFactoryUtils.beanNamesForTypeIncludingAncestors(
this.beanFactory, Object.class, true, false);
for (String beanName : beanNames) {
if (!isEligibleBean(beanName)) {
continue;
}
Class<?> beanType = this.beanFactory.getType(beanName);
if (beanType == null) {
continue;
}
//判断类上是否有@Aspect注解
if (this.advisorFactory.isAspect(beanType)) {
aspectNames.add(beanName);
AspectMetadata amd = new AspectMetadata(beanType, beanName);
if (amd.getAjType().getPerClause().getKind() == PerClauseKind.SINGLETON) {
// 当@Aspect的value属性为""时才会进入到这里
// 创建获取有@Aspect注解类的实例工厂,负责获取有@Aspect注解类的实例
MetadataAwareAspectInstanceFactory factory =
new BeanFactoryAspectInstanceFactory(this.beanFactory, beanName);
//创建切面advisor对象
List<Advisor> classAdvisors = this.advisorFactory.getAdvisors(factory);
if (this.beanFactory.isSingleton(beanName)) {
this.advisorsCache.put(beanName, classAdvisors);
}
else {
this.aspectFactoryCache.put(beanName, factory);
}
advisors.addAll(classAdvisors);
}
else {
MetadataAwareAspectInstanceFactory factory =
new PrototypeAspectInstanceFactory(this.beanFactory, beanName);
this.aspectFactoryCache.put(beanName, factory);
advisors.addAll(this.advisorFactory.getAdvisors(factory));
}
}
}
this.aspectBeanNames = aspectNames;
return advisors;
}
}
}
return advisors;
}
这个方法里面首先从IOC中拿到所有Bean的名称,并循环判断该类上是否带有@Aspect注解,如果有则将BeanName和Bean的Class类型封装到BeanFactoryAspectInstanceFactory中,并调用ReflectiveAspectJAdvisorFactory.getAdvisors创建切面对象:
public List<Advisor> getAdvisors(MetadataAwareAspectInstanceFactory aspectInstanceFactory) {
//从工厂中获取有@Aspect注解的类Class
Class<?> aspectClass = aspectInstanceFactory.getAspectMetadata().getAspectClass();
//从工厂中获取有@Aspect注解的类的名称
String aspectName = aspectInstanceFactory.getAspectMetadata().getAspectName();
validate(aspectClass);
// 创建工厂的装饰类,获取实例只会获取一次
MetadataAwareAspectInstanceFactory lazySingletonAspectInstanceFactory =
new LazySingletonAspectInstanceFactoryDecorator(aspectInstanceFactory);
List<Advisor> advisors = new ArrayList<>();
//这里循环没有@Pointcut注解的方法
for (Method method : getAdvisorMethods(aspectClass)) {
//非常重要重点看看
Advisor advisor = getAdvisor(method, lazySingletonAspectInstanceFactory, advisors.size(), aspectName);
if (advisor != null) {
advisors.add(advisor);
}
}
if (!advisors.isEmpty() && lazySingletonAspectInstanceFactory.getAspectMetadata().isLazilyInstantiated()) {
Advisor instantiationAdvisor = new SyntheticInstantiationAdvisor(lazySingletonAspectInstanceFactory);
advisors.add(0, instantiationAdvisor);
}
//判断属性上是否有引介注解,这里可以不看
for (Field field : aspectClass.getDeclaredFields()) {
//判断属性上是否有DeclareParents注解,如果有返回切面
Advisor advisor = getDeclareParentsAdvisor(field);
if (advisor != null) {
advisors.add(advisor);
}
}
return advisors;
}
private List<Method> getAdvisorMethods(Class<?> aspectClass) {
final List<Method> methods = new ArrayList<>();
ReflectionUtils.doWithMethods(aspectClass, method -> {
// Exclude pointcuts
if (AnnotationUtils.getAnnotation(method, Pointcut.class) == null) {
methods.add(method);
}
});
methods.sort(METHOD_COMPARATOR);
return methods;
}
根据Aspect的Class拿到所有不带@Pointcut注解的方法对象(为什么是不带@Pointcut注解的方法?仔细想想不难理解),另外要注意这里对method进行了排序,看看这个METHOD_COMPARATOR比较器:
private static final Comparator<Method> METHOD_COMPARATOR;
static {
Comparator<Method> adviceKindComparator = new ConvertingComparator<>(
new InstanceComparator<>(
Around.class, Before.class, After.class, AfterReturning.class, AfterThrowing.class),
(Converter<Method, Annotation>) method -> {
AspectJAnnotation<?> annotation =
AbstractAspectJAdvisorFactory.findAspectJAnnotationOnMethod(method);
return (annotation != null ? annotation.getAnnotation() : null);
});
Comparator<Method> methodNameComparator = new ConvertingComparator<>(Method::getName);
METHOD_COMPARATOR = adviceKindComparator.thenComparing(methodNameComparator);
}
关注InstanceComparator构造函数参数,记住它们的顺序,这就是AOP链式调用中同一个@Aspect类中Advice的执行顺序。接着往下看,在getAdvisors方法中循环获取到的methods,分别调用getAdvisor方法,也就是根据方法逐个去创建切面:
public Advisor getAdvisor(Method candidateAdviceMethod, MetadataAwareAspectInstanceFactory aspectInstanceFactory,
int declarationOrderInAspect, String aspectName) {
validate(aspectInstanceFactory.getAspectMetadata().getAspectClass());
//获取pointCut对象,最重要的是从注解中获取表达式
AspectJExpressionPointcut expressionPointcut = getPointcut(
candidateAdviceMethod, aspectInstanceFactory.getAspectMetadata().getAspectClass());
if (expressionPointcut == null) {
return null;
}
//创建Advisor切面类,这才是真正的切面类,一个切面类里面肯定要有1、pointCut 2、advice
//这里pointCut是expressionPointcut, advice 增强方法是 candidateAdviceMethod
return new InstantiationModelAwarePointcutAdvisorImpl(expressionPointcut, candidateAdviceMethod,
this, aspectInstanceFactory, declarationOrderInAspect, aspectName);
}
private static final Class<?>[] ASPECTJ_ANNOTATION_CLASSES = new Class<?>[] {
Pointcut.class, Around.class, Before.class, After.class, AfterReturning.class, AfterThrowing.class};
private AspectJExpressionPointcut getPointcut(Method candidateAdviceMethod, Class<?> candidateAspectClass) {
//从候选的增强方法里面 candidateAdviceMethod 找有有注解
//Pointcut.class, Around.class, Before.class, After.class, AfterReturning.class, AfterThrowing.class
//并把注解信息封装成AspectJAnnotation对象
AspectJAnnotation<?> aspectJAnnotation =
AbstractAspectJAdvisorFactory.findAspectJAnnotationOnMethod(candidateAdviceMethod);
if (aspectJAnnotation == null) {
return null;
}
//创建一个PointCut类,并且把前面从注解里面解析的表达式设置进去
AspectJExpressionPointcut ajexp =
new AspectJExpressionPointcut(candidateAspectClass, new String[0], new Class<?>[0]);
ajexp.setExpression(aspectJAnnotation.getPointcutExpression());
if (this.beanFactory != null) {
ajexp.setBeanFactory(this.beanFactory);
}
return ajexp;
}
之前就说过切面的定义,是切点和增强的组合,所以这里首先通过getPointcut获取到注解对象,然后new了一个Pointcut对象,并将表达式设置进去。然后在getAdvisor方法中最后new了一个InstantiationModelAwarePointcutAdvisorImpl对象:
public InstantiationModelAwarePointcutAdvisorImpl(AspectJExpressionPointcut declaredPointcut,
Method aspectJAdviceMethod, AspectJAdvisorFactory aspectJAdvisorFactory,
MetadataAwareAspectInstanceFactory aspectInstanceFactory, int declarationOrder, String aspectName) {
this.declaredPointcut = declaredPointcut;
this.declaringClass = aspectJAdviceMethod.getDeclaringClass();
this.methodName = aspectJAdviceMethod.getName();
this.parameterTypes = aspectJAdviceMethod.getParameterTypes();
this.aspectJAdviceMethod = aspectJAdviceMethod;
this.aspectJAdvisorFactory = aspectJAdvisorFactory;
this.aspectInstanceFactory = aspectInstanceFactory;
this.declarationOrder = declarationOrder;
this.aspectName = aspectName;
if (aspectInstanceFactory.getAspectMetadata().isLazilyInstantiated()) {
// Static part of the pointcut is a lazy type.
Pointcut preInstantiationPointcut = Pointcuts.union(
aspectInstanceFactory.getAspectMetadata().getPerClausePointcut(), this.declaredPointcut);
// Make it dynamic: must mutate from pre-instantiation to post-instantiation state.
// If it's not a dynamic pointcut, it may be optimized out
// by the Spring AOP infrastructure after the first evaluation.
this.pointcut = new PerTargetInstantiationModelPointcut(
this.declaredPointcut, preInstantiationPointcut, aspectInstanceFactory);
this.lazy = true;
}
else {
// A singleton aspect.
this.pointcut = this.declaredPointcut;
this.lazy = false;
//这个方法重点看看,创建advice对象
this.instantiatedAdvice = instantiateAdvice(this.declaredPointcut);
}
}
这个就是我们的切面类,在其构造方法的最后通过instantiateAdvice创建了Advice对象。注意这里传进来的declarationOrder参数,它就是循环method时的序号,其作用就是赋值给这里的declarationOrder属性以及Advice的declarationOrder属性,在后面排序时就会通过这个序号来比较,因此Advice的执行顺序是固定的,至于为什么要固定,后面分析完AOP链式调用过程自然就明白了。
public Advice getAdvice(Method candidateAdviceMethod, AspectJExpressionPointcut expressionPointcut,
MetadataAwareAspectInstanceFactory aspectInstanceFactory, int declarationOrder, String aspectName) {
//获取有@Aspect注解的类
Class<?> candidateAspectClass = aspectInstanceFactory.getAspectMetadata().getAspectClass();
validate(candidateAspectClass);
//找到candidateAdviceMethod方法上面的注解,并且包装成AspectJAnnotation对象,这个对象中就有注解类型
AspectJAnnotation<?> aspectJAnnotation =
AbstractAspectJAdvisorFactory.findAspectJAnnotationOnMethod(candidateAdviceMethod);
if (aspectJAnnotation == null) {
return null;
}
AbstractAspectJAdvice springAdvice;
//根据不同的注解类型创建不同的advice类实例
switch (aspectJAnnotation.getAnnotationType()) {
case AtPointcut:
if (logger.isDebugEnabled()) {
logger.debug("Processing pointcut '" + candidateAdviceMethod.getName() + "'");
}
return null;
case AtAround:
//实现了MethodInterceptor接口
springAdvice = new AspectJAroundAdvice(
candidateAdviceMethod, expressionPointcut, aspectInstanceFactory);
break;
case AtBefore:
//实现了MethodBeforeAdvice接口,没有实现MethodInterceptor接口
springAdvice = new AspectJMethodBeforeAdvice(
candidateAdviceMethod, expressionPointcut, aspectInstanceFactory);
break;
case AtAfter:
//实现了MethodInterceptor接口
springAdvice = new AspectJAfterAdvice(
candidateAdviceMethod, expressionPointcut, aspectInstanceFactory);
break;
case AtAfterReturning:
//实现了AfterReturningAdvice接口,没有实现MethodInterceptor接口
springAdvice = new AspectJAfterReturningAdvice(
candidateAdviceMethod, expressionPointcut, aspectInstanceFactory);
AfterReturning afterReturningAnnotation = (AfterReturning) aspectJAnnotation.getAnnotation();
if (StringUtils.hasText(afterReturningAnnotation.returning())) {
springAdvice.setReturningName(afterReturningAnnotation.returning());
}
break;
case AtAfterThrowing:
//实现了MethodInterceptor接口
springAdvice = new AspectJAfterThrowingAdvice(
candidateAdviceMethod, expressionPointcut, aspectInstanceFactory);
AfterThrowing afterThrowingAnnotation = (AfterThrowing) aspectJAnnotation.getAnnotation();
if (StringUtils.hasText(afterThrowingAnnotation.throwing())) {
springAdvice.setThrowingName(afterThrowingAnnotation.throwing());
}
break;
default:
throw new UnsupportedOperationException(
"Unsupported advice type on method: " + candidateAdviceMethod);
}
// Now to configure the advice...
springAdvice.setAspectName(aspectName);
springAdvice.setDeclarationOrder(declarationOrder);
String[] argNames = this.parameterNameDiscoverer.getParameterNames(candidateAdviceMethod);
if (argNames != null) {
springAdvice.setArgumentNamesFromStringArray(argNames);
}
//计算argNames和类型的对应关系
springAdvice.calculateArgumentBindings();
return springAdvice;
}
这里逻辑很清晰,就是拿到方法上的注解类型,根据类型创建不同的增强Advice对象:AspectJAroundAdvice、AspectJMethodBeforeAdvice、AspectJAfterAdvice、AspectJAfterReturningAdvice、AspectJAfterThrowingAdvice。完成之后通过calculateArgumentBindings方法进行参数绑定,感兴趣的可自行研究。这里主要看看几个Advice的继承体系:
可以看到有两个Advice是没有实现MethodInterceptor接口的:AspectJMethodBeforeAdvice和AspectJAfterReturningAdvice。而MethodInterceptor有一个invoke方法,这个方法就是链式调用的核心方法,但那两个没有实现该方法的Advice怎么处理呢?稍后会分析。
到这里切面对象就创建完成了,接下来就是判断当前创建的Bean实例是否和这些切面匹配以及对切面排序。匹配过程比较复杂,对理解主流程也没什么帮助,所以这里就不展开分析,感兴趣的自行分析(AbstractAdvisorAutoProxyCreator.findAdvisorsThatCanApply())。下面看看排序的过程,回到AbstractAdvisorAutoProxyCreator.findEligibleAdvisors方法:
protected List<Advisor> findEligibleAdvisors(Class<?> beanClass, String beanName) {
//找到候选的切面,其实就是一个寻找有@Aspectj注解的过程,把工程中所有有这个注解的类封装成Advisor返回
List<Advisor> candidateAdvisors = findCandidateAdvisors();
//判断候选的切面是否作用在当前beanClass上面,就是一个匹配过程。。现在就是一个匹配
List<Advisor> eligibleAdvisors = findAdvisorsThatCanApply(candidateAdvisors, beanClass, beanName);
extendAdvisors(eligibleAdvisors);
if (!eligibleAdvisors.isEmpty()) {
//对有@Order@Priority进行排序
eligibleAdvisors = sortAdvisors(eligibleAdvisors);
}
return eligibleAdvisors;
}
sortAdvisors方法就是排序,但这个方法有两个实现:当前类AbstractAdvisorAutoProxyCreator和子类AspectJAwareAdvisorAutoProxyCreator,应该走哪个呢?
通过类图我们可以肯定是进入的AspectJAwareAdvisorAutoProxyCreator类,因为AnnotationAwareAspectJAutoProxyCreator的父类是它。
protected List<Advisor> sortAdvisors(List<Advisor> advisors) {
List<PartiallyComparableAdvisorHolder> partiallyComparableAdvisors = new ArrayList<>(advisors.size());
for (Advisor element : advisors) {
partiallyComparableAdvisors.add(
new PartiallyComparableAdvisorHolder(element, DEFAULT_PRECEDENCE_COMPARATOR));
}
List<PartiallyComparableAdvisorHolder> sorted = PartialOrder.sort(partiallyComparableAdvisors);
if (sorted != null) {
List<Advisor> result = new ArrayList<>(advisors.size());
for (PartiallyComparableAdvisorHolder pcAdvisor : sorted) {
result.add(pcAdvisor.getAdvisor());
}
return result;
}
else {
return super.sortAdvisors(advisors);
}
}
这里排序主要是委托给PartialOrder进行的,而在此之前将所有的切面都封装成了PartiallyComparableAdvisorHolder对象,注意传入的DEFAULT_PRECEDENCE_COMPARATOR参数,这个就是比较器对象:
private static final Comparator<Advisor> DEFAULT_PRECEDENCE_COMPARATOR = new AspectJPrecedenceComparator();
所以我们直接看这个比较器的compare方法:
public int compare(Advisor o1, Advisor o2) {
int advisorPrecedence = this.advisorComparator.compare(o1, o2);
if (advisorPrecedence == SAME_PRECEDENCE && declaredInSameAspect(o1, o2)) {
advisorPrecedence = comparePrecedenceWithinAspect(o1, o2);
}
return advisorPrecedence;
}
private final Comparator<? super Advisor> advisorComparator;
public AspectJPrecedenceComparator() {
this.advisorComparator = AnnotationAwareOrderComparator.INSTANCE;
}
第一步先通过AnnotationAwareOrderComparator去比较,点进去看可以发现是对实现了PriorityOrdered和Ordered接口以及标记了Priority和Order注解的非同一个@Aspect类中的切面进行排序。这个和之前分析BeanFacotryPostProcessor类是一样的原理。而对同一个@Aspect类中的切面排序主要是comparePrecedenceWithinAspect方法:
private int comparePrecedenceWithinAspect(Advisor advisor1, Advisor advisor2) {
boolean oneOrOtherIsAfterAdvice =
(AspectJAopUtils.isAfterAdvice(advisor1) || AspectJAopUtils.isAfterAdvice(advisor2));
int adviceDeclarationOrderDelta = getAspectDeclarationOrder(advisor1) - getAspectDeclarationOrder(advisor2);
if (oneOrOtherIsAfterAdvice) {
// the advice declared last has higher precedence
if (adviceDeclarationOrderDelta < 0) {
// advice1 was declared before advice2
// so advice1 has lower precedence
return LOWER_PRECEDENCE;
}
else if (adviceDeclarationOrderDelta == 0) {
return SAME_PRECEDENCE;
}
else {
return HIGHER_PRECEDENCE;
}
}
else {
// the advice declared first has higher precedence
if (adviceDeclarationOrderDelta < 0) {
// advice1 was declared before advice2
// so advice1 has higher precedence
return HIGHER_PRECEDENCE;
}
else if (adviceDeclarationOrderDelta == 0) {
return SAME_PRECEDENCE;
}
else {
return LOWER_PRECEDENCE;
}
}
}
private int getAspectDeclarationOrder(Advisor anAdvisor) {
AspectJPrecedenceInformation precedenceInfo =
AspectJAopUtils.getAspectJPrecedenceInformationFor(anAdvisor);
if (precedenceInfo != null) {
return precedenceInfo.getDeclarationOrder();
}
else {
return 0;
}
}
这里就是通过precedenceInfo.getDeclarationOrder拿到在创建InstantiationModelAwarePointcutAdvisorImpl对象时设置的declarationOrder属性,这就验证了之前的说法。
当上面的一切都进行完成后,就该创建代理对象了,回到AbstractAutoProxyCreator.wrapIfNecessary,看关键部分代码:
//如果有切面,则生成该bean的代理
if (specificInterceptors != DO_NOT_PROXY) {
this.advisedBeans.put(cacheKey, Boolean.TRUE);
//把被代理对象bean实例封装到SingletonTargetSource对象中
Object proxy = createProxy(
bean.getClass(), beanName, specificInterceptors, new SingletonTargetSource(bean));
this.proxyTypes.put(cacheKey, proxy.getClass());
return proxy;
}
注意这里将被代理对象封装成了一个SingletonTargetSource对象,它是TargetSource的实现类。
protected Object createProxy(Class<?> beanClass, @Nullable String beanName,
@Nullable Object[] specificInterceptors, TargetSource targetSource) {
if (this.beanFactory instanceof ConfigurableListableBeanFactory) {
AutoProxyUtils.exposeTargetClass((ConfigurableListableBeanFactory) this.beanFactory, beanName, beanClass);
}
//创建代理工厂
ProxyFactory proxyFactory = new ProxyFactory();
proxyFactory.copyFrom(this);
if (!proxyFactory.isProxyTargetClass()) {
if (shouldProxyTargetClass(beanClass, beanName)) {
//proxyTargetClass 是否对类进行代理,而不是对接口进行代理,设置为true时,使用CGLib代理。
proxyFactory.setProxyTargetClass(true);
}
else {
evaluateProxyInterfaces(beanClass, proxyFactory);
}
}
//把advice类型的增强包装成advisor切面
Advisor[] advisors = buildAdvisors(beanName, specificInterceptors);
proxyFactory.addAdvisors(advisors);
proxyFactory.setTargetSource(targetSource);
customizeProxyFactory(proxyFactory);
////用来控制代理工厂被配置后,是否还允许修改代理的配置,默认为false
proxyFactory.setFrozen(this.freezeProxy);
if (advisorsPreFiltered()) {
proxyFactory.setPreFiltered(true);
}
//获取代理实例
return proxyFactory.getProxy(getProxyClassLoader());
}
这里通过ProxyFactory对象去创建代理实例,这是工厂模式的体现,但在创建代理对象之前还有几个准备动作:需要判断是JDK代理还是CGLIB代理以及通过buildAdvisors方法将扩展的Advice封装成Advisor切面。准备完成则通过getProxy创建代理对象:
public Object getProxy(@Nullable ClassLoader classLoader) {
//根据目标对象是否有接口来判断采用什么代理方式,cglib代理还是jdk动态代理
return createAopProxy().getProxy(classLoader);
}
protected final synchronized AopProxy createAopProxy() {
if (!this.active) {
activate();
}
return getAopProxyFactory().createAopProxy(this);
}
public AopProxy createAopProxy(AdvisedSupport config) throws AopConfigException {
if (config.isOptimize() || config.isProxyTargetClass() || hasNoUserSuppliedProxyInterfaces(config)) {
Class<?> targetClass = config.getTargetClass();
if (targetClass == null) {
throw new AopConfigException("TargetSource cannot determine target class: " +
"Either an interface or a target is required for proxy creation.");
}
if (targetClass.isInterface() || Proxy.isProxyClass(targetClass)) {
return new JdkDynamicAopProxy(config);
}
return new ObjenesisCglibAopProxy(config);
}
else {
return new JdkDynamicAopProxy(config);
}
}
首先通过配置拿到对应的代理类:ObjenesisCglibAopProxy和JdkDynamicAopProxy,然后再通过getProxy创建Bean的代理,这里以JdkDynamicAopProxy为例:
public Object getProxy(@Nullable ClassLoader classLoader) {
//advised是代理工厂对象
Class<?>[] proxiedInterfaces = AopProxyUtils.completeProxiedInterfaces(this.advised, true);
findDefinedEqualsAndHashCodeMethods(proxiedInterfaces);
return Proxy.newProxyInstance(classLoader, proxiedInterfaces, this);
}
这里的代码你应该不陌生了,就是JDK的原生API,newProxyInstance方法传入的InvocationHandler对象是this,因此,最终AOP代理的调用就是从该类中的invoke方法开始。至此,代理对象的创建就完成了,下面来看下整个过程的时序图:
小结
代理对象的创建过程整体来说并不复杂,首先找到所有带有@Aspect注解的类,并获取其中没有@Pointcut注解的方法,循环创建切面,而创建切面需要切点和增强两个元素,其中切点可简单理解为我们写的表达式,增强则是根据@Before、@Around、@After等注解创建的对应的Advice类。切面创建好后则需要循环判断哪些切面能对当前的Bean实例的方法进行增强并排序,最后通过ProxyFactory创建代理对象。
AOP链式调用
熟悉JDK动态代理的都知道通过代理对象调用方法时,会进入到InvocationHandler对象的invoke方法,所以我们直接从JdkDynamicAopProxy的这个方法开始:
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
MethodInvocation invocation;
Object oldProxy = null;
boolean setProxyContext = false;
//从代理工厂中拿到TargetSource对象,该对象包装了被代理实例bean
TargetSource targetSource = this.advised.targetSource;
Object target = null;
try {
//被代理对象的equals方法和hashCode方法是不能被代理的,不会走切面
.......
Object retVal;
// 可以从当前线程中拿到代理对象
if (this.advised.exposeProxy) {
// Make invocation available if necessary.
oldProxy = AopContext.setCurrentProxy(proxy);
setProxyContext = true;
}
//这个target就是被代理实例
target = targetSource.getTarget();
Class<?> targetClass = (target != null ? target.getClass() : null);
//从代理工厂中拿过滤器链 Object是一个MethodInterceptor类型的对象,其实就是一个advice对象
List<Object> chain = this.advised.getInterceptorsAndDynamicInterceptionAdvice(method, targetClass);
//如果该方法没有执行链,则说明这个方法不需要被拦截,则直接反射调用
if (chain.isEmpty()) {
Object[] argsToUse = AopProxyUtils.adaptArgumentsIfNecessary(method, args);
retVal = AopUtils.invokeJoinpointUsingReflection(target, method, argsToUse);
}
else {
invocation = new ReflectiveMethodInvocation(proxy, target, method, args, targetClass, chain);
retVal = invocation.proceed();
}
// Massage return value if necessary.
Class<?> returnType = method.getReturnType();
if (retVal != null && retVal == target &&
returnType != Object.class && returnType.isInstance(proxy) &&
!RawTargetAccess.class.isAssignableFrom(method.getDeclaringClass())) {
retVal = proxy;
}
return retVal;
}
finally {
if (target != null && !targetSource.isStatic()) {
// Must have come from TargetSource.
targetSource.releaseTarget(target);
}
if (setProxyContext) {
// Restore old proxy.
AopContext.setCurrentProxy(oldProxy);
}
}
}
这段代码比较长,我删掉了不关键的地方。首先来看this.advised.exposeProxy这个属性,这在@EnableAspectJAutoProxy注解中可以配置,当为true时,会将该代理对象设置到当前线程的ThreadLocal对象中,这样就可以通过AopContext.currentProxy拿到代理对象。这个有什么用呢?我相信有经验的Java开发都遇到过这样一个BUG,在Service实现类中调用本类中的另一个方法时,事务不会生效,这是因为直接通过this调用就不会调用到代理对象的方法,而是原对象的,所以事务切面就没有生效。因此这种情况下就可以从当前线程的ThreadLocal对象拿到代理对象,不过实际上直接使用@Autowired注入自己本身也可以拿到代理对象。
接下来就是通过getInterceptorsAndDynamicInterceptionAdvice拿到执行链,看看具体做了哪些事情:
public List<Object> getInterceptorsAndDynamicInterceptionAdvice(
Advised config, Method method, @Nullable Class<?> targetClass) {
AdvisorAdapterRegistry registry = GlobalAdvisorAdapterRegistry.getInstance();
//从代理工厂中获得该被代理类的所有切面advisor,config就是代理工厂对象
Advisor[] advisors = config.getAdvisors();
List<Object> interceptorList = new ArrayList<>(advisors.length);
Class<?> actualClass = (targetClass != null ? targetClass : method.getDeclaringClass());
Boolean hasIntroductions = null;
for (Advisor advisor : advisors) {
//大部分走这里
if (advisor instanceof PointcutAdvisor) {
// Add it conditionally.
PointcutAdvisor pointcutAdvisor = (PointcutAdvisor) advisor;
//如果切面的pointCut和被代理对象是匹配的,说明是切面要拦截的对象
if (config.isPreFiltered() || pointcutAdvisor.getPointcut().getClassFilter().matches(actualClass)) {
MethodMatcher mm = pointcutAdvisor.getPointcut().getMethodMatcher();
boolean match;
if (mm instanceof IntroductionAwareMethodMatcher) {
if (hasIntroductions == null) {
hasIntroductions = hasMatchingIntroductions(advisors, actualClass);
}
match = ((IntroductionAwareMethodMatcher) mm).matches(method, actualClass, hasIntroductions);
}
else {
//接下来判断方法是否是切面pointcut需要拦截的方法
match = mm.matches(method, actualClass);
}
//如果类和方法都匹配
if (match) {
//获取到切面advisor中的advice,并且包装成MethodInterceptor类型的对象
MethodInterceptor[] interceptors = registry.getInterceptors(advisor);
if (mm.isRuntime()) {
for (MethodInterceptor interceptor : interceptors) {
interceptorList.add(new InterceptorAndDynamicMethodMatcher(interceptor, mm));
}
}
else {
interceptorList.addAll(Arrays.asList(interceptors));
}
}
}
}
//如果是引介切面
else if (advisor instanceof IntroductionAdvisor) {
IntroductionAdvisor ia = (IntroductionAdvisor) advisor;
if (config.isPreFiltered() || ia.getClassFilter().matches(actualClass)) {
Interceptor[] interceptors = registry.getInterceptors(advisor);
interceptorList.addAll(Arrays.asList(interceptors));
}
}
else {
Interceptor[] interceptors = registry.getInterceptors(advisor);
interceptorList.addAll(Arrays.asList(interceptors));
}
}
return interceptorList;
}
这也是个长方法,看关键的部分,因为之前我们创建的基本上都是InstantiationModelAwarePointcutAdvisorImpl对象,该类是PointcutAdvisor的实现类,所以会进入第一个if判断里,这里首先进行匹配,看切点和当前对象以及该对象的哪些方法匹配,如果能匹配上,则调用getInterceptors获取执行链:
private final List<AdvisorAdapter> adapters = new ArrayList<>(3);
public DefaultAdvisorAdapterRegistry() {
registerAdvisorAdapter(new MethodBeforeAdviceAdapter());
registerAdvisorAdapter(new AfterReturningAdviceAdapter());
registerAdvisorAdapter(new ThrowsAdviceAdapter());
}
public MethodInterceptor[] getInterceptors(Advisor advisor) throws UnknownAdviceTypeException {
List<MethodInterceptor> interceptors = new ArrayList<>(3);
Advice advice = advisor.getAdvice();
//如果是MethodInterceptor类型的,如:AspectJAroundAdvice
//AspectJAfterAdvice
//AspectJAfterThrowingAdvice
if (advice instanceof MethodInterceptor) {
interceptors.add((MethodInterceptor) advice);
}
//处理 AspectJMethodBeforeAdvice AspectJAfterReturningAdvice
for (AdvisorAdapter adapter : this.adapters) {
if (adapter.supportsAdvice(advice)) {
interceptors.add(adapter.getInterceptor(advisor));
}
}
if (interceptors.isEmpty()) {
throw new UnknownAdviceTypeException(advisor.getAdvice());
}
return interceptors.toArray(new MethodInterceptor[0]);
}
这里我们可以看到如果是MethodInterceptor的实现类,则直接添加到链中,如果不是,则需要通过适配器去包装后添加,刚好这里有MethodBeforeAdviceAdapter和AfterReturningAdviceAdapter两个适配器对应上文两个没有实现MethodInterceptor接口的类。最后将Interceptors返回。
if (chain.isEmpty()) {
Object[] argsToUse = AopProxyUtils.adaptArgumentsIfNecessary(method, args);
retVal = AopUtils.invokeJoinpointUsingReflection(target, method, argsToUse);
}
else {
// We need to create a method invocation...
invocation = new ReflectiveMethodInvocation(proxy, target, method, args, targetClass, chain);
// Proceed to the joinpoint through the interceptor chain.
retVal = invocation.proceed();
}
返回到invoke方法后,如果执行链为空,说明该方法不需要被增强,所以直接反射调用原对象的方法(注意传入的是TargetSource封装的被代理对象);反之,则通过ReflectiveMethodInvocation类进行链式调用,关键方法就是proceed:
private int currentInterceptorIndex = -1;
public Object proceed() throws Throwable {
//如果执行链中的advice全部执行完,则直接调用joinPoint方法,就是被代理方法
if (this.currentInterceptorIndex == this.interceptorsAndDynamicMethodMatchers.size() - 1) {
return invokeJoinpoint();
}
Object interceptorOrInterceptionAdvice =
this.interceptorsAndDynamicMethodMatchers.get(++this.currentInterceptorIndex);
if (interceptorOrInterceptionAdvice instanceof InterceptorAndDynamicMethodMatcher) {
InterceptorAndDynamicMethodMatcher dm =
(InterceptorAndDynamicMethodMatcher) interceptorOrInterceptionAdvice;
Class<?> targetClass = (this.targetClass != null ? this.targetClass : this.method.getDeclaringClass());
if (dm.methodMatcher.matches(this.method, targetClass, this.arguments)) {
return dm.interceptor.invoke(this);
}
else {
return proceed();
}
}
else {
//调用MethodInterceptor中的invoke方法
return ((MethodInterceptor) interceptorOrInterceptionAdvice).invoke(this);
}
}
这个方法的核心就在两个地方:invokeJoinpoint和interceptorOrInterceptionAdvice.invoke(this)。当增强方法调用完后就会通过前者调用到被代理的方法,否则则是依次调用Interceptor的invoke方法。下面就分别看看每个Interceptor是怎么实现的。
- AspectJAroundAdvice
public Object invoke(MethodInvocation mi) throws Throwable {
if (!(mi instanceof ProxyMethodInvocation)) {
throw new IllegalStateException("MethodInvocation is not a Spring ProxyMethodInvocation: " + mi);
}
ProxyMethodInvocation pmi = (ProxyMethodInvocation) mi;
ProceedingJoinPoint pjp = lazyGetProceedingJoinPoint(pmi);
JoinPointMatch jpm = getJoinPointMatch(pmi);
return invokeAdviceMethod(pjp, jpm, null, null);
}
- MethodBeforeAdviceInterceptor -> AspectJMethodBeforeAdvice
public Object invoke(MethodInvocation mi) throws Throwable {
this.advice.before(mi.getMethod(), mi.getArguments(), mi.getThis());
return mi.proceed();
}
public void before(Method method, Object[] args, @Nullable Object target) throws Throwable {
invokeAdviceMethod(getJoinPointMatch(), null, null);
}
- AspectJAfterAdvice
public Object invoke(MethodInvocation mi) throws Throwable {
try {
return mi.proceed();
}
finally {
invokeAdviceMethod(getJoinPointMatch(), null, null);
}
}
- AfterReturningAdviceInterceptor -> AspectJAfterReturningAdvice
public Object invoke(MethodInvocation mi) throws Throwable {
Object retVal = mi.proceed();
this.advice.afterReturning(retVal, mi.getMethod(), mi.getArguments(), mi.getThis());
return retVal;
}
public void afterReturning(@Nullable Object returnValue, Method method, Object[] args, @Nullable Object target) throws Throwable {
if (shouldInvokeOnReturnValueOf(method, returnValue)) {
invokeAdviceMethod(getJoinPointMatch(), returnValue, null);
}
}
- AspectJAfterThrowingAdvice
public Object invoke(MethodInvocation mi) throws Throwable {
try {
return mi.proceed();
}
catch (Throwable ex) {
if (shouldInvokeOnThrowing(ex)) {
invokeAdviceMethod(getJoinPointMatch(), null, ex);
}
throw ex;
}
}
这里的调用顺序就是前面创建切面时注解定义的顺序,其核心就是通过proceed方法控制流程,每执行完一个Advice就会回到proceed方法中调用下一个Advice。光看代码可能会比较绕,我画了一张图帮助理解:
以上就是AOP的链式调用过程,你可以思考下如果有多个@Aspect类,这个调用过程又是怎样的?其核心思想和“栈”差不多,就是“先进后出,后进先出”。
AOP扩展知识
一、自定义全局拦截器Interceptor
在上文创建代理对象的时候有这样一个方法:
protected Advisor[] buildAdvisors(@Nullable String beanName, @Nullable Object[] specificInterceptors) {
//自定义MethodInterceptor.拿到setInterceptorNames方法注入的Interceptor对象
Advisor[] commonInterceptors = resolveInterceptorNames();
List<Object> allInterceptors = new ArrayList<>();
if (specificInterceptors != null) {
allInterceptors.addAll(Arrays.asList(specificInterceptors));
if (commonInterceptors.length > 0) {
if (this.applyCommonInterceptorsFirst) {
allInterceptors.addAll(0, Arrays.asList(commonInterceptors));
}
else {
allInterceptors.addAll(Arrays.asList(commonInterceptors));
}
}
}
Advisor[] advisors = new Advisor[allInterceptors.size()];
for (int i = 0; i < allInterceptors.size(); i++) {
//对自定义的advice要进行包装,把advice包装成advisor对象,切面对象
advisors[i] = this.advisorAdapterRegistry.wrap(allInterceptors.get(i));
}
return advisors;
}
这个方法的作用就在于我们可以扩展我们自己的Interceptor,首先通过resolveInterceptorNames方法获取到通过setInterceptorNames方法设置的Interceptor,然后调用DefaultAdvisorAdapterRegistry.wrap方法将其包装为DefaultPointcutAdvisor对象并返回:
public Advisor wrap(Object adviceObject) throws UnknownAdviceTypeException {
if (adviceObject instanceof Advisor) {
return (Advisor) adviceObject;
}
if (!(adviceObject instanceof Advice)) {
throw new UnknownAdviceTypeException(adviceObject);
}
Advice advice = (Advice) adviceObject;
if (advice instanceof MethodInterceptor) {
return new DefaultPointcutAdvisor(advice);
}
for (AdvisorAdapter adapter : this.adapters) {
if (adapter.supportsAdvice(advice)) {
return new DefaultPointcutAdvisor(advice);
}
}
throw new UnknownAdviceTypeException(advice);
}
public DefaultPointcutAdvisor(Advice advice) {
this(Pointcut.TRUE, advice);
}
需要注意DefaultPointcutAdvisor构造器里面传入了一个Pointcut.TRUE,表示这种扩展的Interceptor是全局的拦截器。下面来看看如何使用:
public class MyMethodInterceptor implements MethodInterceptor {
@Override
public Object invoke(MethodInvocation invocation) throws Throwable {
System.out.println("自定义拦截器");
return invocation.proceed();
}
}
首先写一个类实现MethodInterceptor 接口,在invoke方法中实现我们的拦截逻辑,然后通过下面的方式测试,只要UserService 有AOP拦截就会发现自定义的MyMethodInterceptor也生效了。
public void costomInterceptorTest() {
AnnotationAwareAspectJAutoProxyCreator bean = applicationContext.getBean(AnnotationAwareAspectJAutoProxyCreator.class);
bean.setInterceptorNames("myMethodInterceptor ");
UserService userService = applicationContext.getBean(UserService.class);
userService.queryUser("dark");
}
但是如果换个顺序,像下面这样:
public void costomInterceptorTest() {
UserService userService = applicationContext.getBean(UserService.class);
AnnotationAwareAspectJAutoProxyCreator bean = applicationContext.getBean(AnnotationAwareAspectJAutoProxyCreator.class);
bean.setInterceptorNames("myMethodInterceptor ");
userService.queryUser("dark");
}
这时自定义的全局拦截器就没有作用了,这是为什么呢?因为当执行getBean的时候,如果有切面匹配就会通过ProxyFactory去创建代理对象,注意Interceptor是存到这个Factory对象中的,而这个对象和代理对象是一一对应的,因此调用getBean时,还没有myMethodInterceptor这个对象,自定义拦截器就没有效果了,也就是说要想自定义拦截器生效,就必须在代理对象生成之前注册进去。
二、循环依赖三级缓存存在的必要性
在上一篇文章我分析了Spring是如何通过三级缓存来解决循环依赖的问题的,但你是否考虑过第三级缓存为什么要存在?我直接将bean存到二级不就行了么,为什么还要存一个ObjectFactory对象到第三级缓存中?这个在学习了AOP之后就很清楚了,因为我们在@Autowired对象时,想要注入的不一定是Bean本身,而是想要注入一个修改过后的对象,如代理对象。在AbstractAutowireCapableBeanFactory.getEarlyBeanReference方法中循环调用了SmartInstantiationAwareBeanPostProcessor.getEarlyBeanReference方法,AbstractAutoProxyCreator对象就实现了该方法:
public Object getEarlyBeanReference(Object bean, String beanName) {
Object cacheKey = getCacheKey(bean.getClass(), beanName);
if (!this.earlyProxyReferences.contains(cacheKey)) {
this.earlyProxyReferences.add(cacheKey);
}
// 创建代理对象
return wrapIfNecessary(bean, beanName, cacheKey);
}
因此,当我们想要对循坏依赖的Bean做出修改时,就可以像AOP这样做。
三、如何在Bean创建之前提前创建代理对象
Spring的代理对象基本上都是在Bean实例化完成之后创建的,但在文章开始我就说过,Spring也提供了一个机会在创建Bean对象之前就创建代理对象,在AbstractAutowireCapableBeanFactory.resolveBeforeInstantiation方法中:
protected Object resolveBeforeInstantiation(String beanName, RootBeanDefinition mbd) {
Object bean = null;
if (!Boolean.FALSE.equals(mbd.beforeInstantiationResolved)) {
// Make sure bean class is actually resolved at this point.
if (!mbd.isSynthetic() && hasInstantiationAwareBeanPostProcessors()) {
Class<?> targetType = determineTargetType(beanName, mbd);
if (targetType != null) {
bean = applyBeanPostProcessorsBeforeInstantiation(targetType, beanName);
if (bean != null) {
bean = applyBeanPostProcessorsAfterInitialization(bean, beanName);
}
}
}
mbd.beforeInstantiationResolved = (bean != null);
}
return bean;
}
protected Object applyBeanPostProcessorsBeforeInstantiation(Class<?> beanClass, String beanName) {
for (BeanPostProcessor bp : getBeanPostProcessors()) {
if (bp instanceof InstantiationAwareBeanPostProcessor) {
InstantiationAwareBeanPostProcessor ibp = (InstantiationAwareBeanPostProcessor) bp;
Object result = ibp.postProcessBeforeInstantiation(beanClass, beanName);
if (result != null) {
return result;
}
}
}
return null;
}
主要是InstantiationAwareBeanPostProcessor.postProcessBeforeInstantiation方法中,这里又会进入到AbstractAutoProxyCreator类中:
public Object postProcessBeforeInstantiation(Class<?> beanClass, String beanName) {
TargetSource targetSource = getCustomTargetSource(beanClass, beanName);
if (targetSource != null) {
if (StringUtils.hasLength(beanName)) {
this.targetSourcedBeans.add(beanName);
}
Object[] specificInterceptors = getAdvicesAndAdvisorsForBean(beanClass, beanName, targetSource);
Object proxy = createProxy(beanClass, beanName, specificInterceptors, targetSource);
this.proxyTypes.put(cacheKey, proxy.getClass());
return proxy;
}
return null;
}
protected TargetSource getCustomTargetSource(Class<?> beanClass, String beanName) {
// We can't create fancy target sources for directly registered singletons.
if (this.customTargetSourceCreators != null &&
this.beanFactory != null && this.beanFactory.containsBean(beanName)) {
for (TargetSourceCreator tsc : this.customTargetSourceCreators) {
TargetSource ts = tsc.getTargetSource(beanClass, beanName);
if (ts != null) {
return ts;
}
}
}
// No custom TargetSource found.
return null;
}
看到这里大致应该明白了,先是获取到一个自定义的TargetSource对象,然后创建代理对象,所以我们首先需要自己实现一个TargetSource类,这里直接继承一个抽象类,getTarget方法则返回原始对象:
public class MyTargetSource extends AbstractBeanFactoryBasedTargetSource {
@Override
public Object getTarget() throws Exception {
return getBeanFactory().getBean(getTargetBeanName());
}
}
但这还不够,上面首先判断了customTargetSourceCreators!=null,而这个属性是个数组,可以通过下面这个方法设置进来:
public void setCustomTargetSourceCreators(TargetSourceCreator... targetSourceCreators) {
this.customTargetSourceCreators = targetSourceCreators;
}
所以我们还要实现一个TargetSourceCreator类,同样继承一个抽象类实现,并只对userServiceImpl对象进行拦截:
public class MyTargetSourceCreator extends AbstractBeanFactoryBasedTargetSourceCreator {
@Override
protected AbstractBeanFactoryBasedTargetSource createBeanFactoryBasedTargetSource(Class<?> beanClass, String beanName) {
if (getBeanFactory() instanceof ConfigurableListableBeanFactory) {
if(beanName.equalsIgnoreCase("userServiceImpl")) {
return new MyTargetSource();
}
}
return null;
}
}
createBeanFactoryBasedTargetSource方法是在AbstractBeanFactoryBasedTargetSourceCreator.getTargetSource中调用的,而getTargetSource就是在上面getCustomTargetSource中调用的。以上工作做完后,还需要将其设置到AnnotationAwareAspectJAutoProxyCreator对象中,因此需要我们注入这个对象:
@Configuration
public class TargetSourceCreatorBean {
@Autowired
private BeanFactory beanFactory;
@Bean
public AnnotationAwareAspectJAutoProxyCreator annotationAwareAspectJAutoProxyCreator() {
AnnotationAwareAspectJAutoProxyCreator creator = new AnnotationAwareAspectJAutoProxyCreator();
MyTargetSourceCreator myTargetSourceCreator = new MyTargetSourceCreator();
myTargetSourceCreator.setBeanFactory(beanFactory);
creator.setCustomTargetSourceCreators(myTargetSourceCreator);
return creator;
}
}
这样,当我们通过getBean获取userServiceImpl的对象时,就会优先生成代理对象,然后在调用执行链的过程中再通过TargetSource.getTarget获取到被代理对象。但是,为什么我们在getTarget方法中调用getBean就能拿到被代理对象呢?
继续探究,通过断点我发现从getTarget进入时,在resolveBeforeInstantiation方法中返回的bean就是null了,而getBeanPostProcessors方法返回的Processors中也没有了AnnotationAwareAspectJAutoProxyCreator对象,也就是没有进入到AbstractAutoProxyCreator.postProcessBeforeInstantiation方法中,所以不会再次获取到代理对象,那AnnotationAwareAspectJAutoProxyCreator对象是在什么时候移除的呢?
带着问题,我开始反推,发现在AbstractBeanFactoryBasedTargetSourceCreator类中有这样一个方法buildInternalBeanFactory:
protected DefaultListableBeanFactory buildInternalBeanFactory(ConfigurableBeanFactory containingFactory) {
DefaultListableBeanFactory internalBeanFactory = new DefaultListableBeanFactory(containingFactory);
// Required so that all BeanPostProcessors, Scopes, etc become available.
internalBeanFactory.copyConfigurationFrom(containingFactory);
// Filter out BeanPostProcessors that are part of the AOP infrastructure,
// since those are only meant to apply to beans defined in the original factory.
internalBeanFactory.getBeanPostProcessors().removeIf(beanPostProcessor ->
beanPostProcessor instanceof AopInfrastructureBean);
return internalBeanFactory;
}
在这里移除掉了所有AopInfrastructureBean的子类,而AnnotationAwareAspectJAutoProxyCreator就是其子类,那这个方法是在哪里调用的呢?继续反推:
protected DefaultListableBeanFactory getInternalBeanFactoryForBean(String beanName) {
synchronized (this.internalBeanFactories) {
DefaultListableBeanFactory internalBeanFactory = this.internalBeanFactories.get(beanName);
if (internalBeanFactory == null) {
internalBeanFactory = buildInternalBeanFactory(this.beanFactory);
this.internalBeanFactories.put(beanName, internalBeanFactory);
}
return internalBeanFactory;
}
}
public final TargetSource getTargetSource(Class<?> beanClass, String beanName) {
AbstractBeanFactoryBasedTargetSource targetSource =
createBeanFactoryBasedTargetSource(beanClass, beanName);
// 创建完targetSource后就移除掉AopInfrastructureBean类型的BeanPostProcessor对象,如AnnotationAwareAspectJAutoProxyCreator
DefaultListableBeanFactory internalBeanFactory = getInternalBeanFactoryForBean(beanName);
......
return targetSource;
}
至此,关于TargetSource接口扩展的原理就搞明白了。
总结
本篇篇幅比较长,主要搞明白Spring代理对象是如何创建的以及AOP链式调用过程,而后面的扩展则是对AOP以及Bean创建过程中一些疑惑的补充,可根据实际情况学习掌握。
这一次搞懂Spring代理创建及AOP链式调用过程的更多相关文章
- 这一次搞懂Spring事务注解的解析
前言 事务我们都知道是什么,而Spring事务就是在数据库之上利用AOP提供声明式事务和编程式事务帮助我们简化开发,解耦业务逻辑和系统逻辑.但是Spring事务原理是怎样?事务在方法间是如何传播的?为 ...
- 一张图搞懂Spring bean的完整生命周期
一张图搞懂Spring bean的生命周期,从Spring容器启动到容器销毁bean的全过程,包括下面一系列的流程,了解这些流程对我们想在其中任何一个环节怎么操作bean的生成及修饰是非常有帮助的. ...
- 五分钟学Java:一篇文章搞懂spring和springMVC
原创声明 本文作者:黄小斜 转载请务必在文章开头注明出处和作者. 本文思维导图 什么是Spring,为什么你要学习spring? 你第一次接触spring框架是在什么时候?相信很多人和我一样,第一次了 ...
- 五分钟学Java:一篇文章带你搞懂spring全家桶套餐
原创声明 本文首发于微信公众号[程序员黄小斜] 本文作者:黄小斜 转载请务必在文章开头注明出处和作者. 本文思维导图 什么是Spring,为什么你要学习spring? 你第一次接触spring框架是在 ...
- 这一次搞懂Spring事务是如何传播的
文章目录 前言 正文 事务切面的调用过程 事务的传播性概念 实例分析 总结 前言 上一篇分析了事务注解的解析过程,本质上是将事务封装为切面加入到AOP的执行链中,因此会调用到MethodIncepto ...
- 一张图彻底搞懂Spring循环依赖
1 什么是循环依赖? 如下图所示: BeanA类依赖了BeanB类,同时BeanB类又依赖了BeanA类.这种依赖关系形成了一个闭环,我们把这种依赖关系就称之为循环依赖.同理,再如下图的情况: 上图中 ...
- 高频面试题:一张图彻底搞懂Spring循环依赖
1 什么是循环依赖? 如下图所示: BeanA类依赖了BeanB类,同时BeanB类又依赖了BeanA类.这种依赖关系形成了一个闭环,我们把这种依赖关系就称之为循环依赖.同理,再如下图的情况: 上图中 ...
- 一文搞懂spring的常用注解
spring传统做法是使用xml文件对bean进行注入和配置.通过使用spring提供的注解,可以极大的降低配置xml文件的繁琐.本文将介绍常用的注解. 一@Autowired Autowired意为 ...
- 彻底搞懂Spring状态机原理,实现订单与物流解耦
本文节选自<设计模式就该这样学> 1 状态模式的UML类图 状态模式的UML类图如下图所示. 2 使用状态模式实现登录状态自由切换 当我们在社区阅读文章时,如果觉得文章写得很好,我们就会评 ...
随机推荐
- go语言依赖注入实现
最近做项目中,生成对象还是使用比较原始的New和简单工厂的方式,使用过程中感觉不太爽快(依赖紧密,有点改动就比较麻烦),还是比较喜欢使用依赖注入的方式. 然后网上没有找到比较好用的依赖注入包,就自己动 ...
- 【持续更新】springboot相关配置
@Configuration public class MyWebMvcConfig implements WebMvcConfigurer { //注册了新的访问路径 @Override publi ...
- 6.Set集合类型操作使用
Set集合类型 (1)介绍 redis的set是string类型的无序集合set元素最大可以包含(2的32次方-1)个元素关于set集合类型除了基本的添加删除操作,其它有用的操作还包含集合的取并集(u ...
- Java IO(十一) DataInputStream 和 DataOutputStream
Java IO(十一) DataInputStream 和 DataOutputStream 一.介绍 DataInputStream 和 DataOutputStream 是数据字节流,分别继承自 ...
- win服务器管理软件巧利用——如何让服务器管理事半功倍
那些服务器管理大牛估计看到这个标题会笑了,服务器怎么管理,靠自带的远程桌面肯定是远远不够的,要实现上千台服务器同时登陆,没有一个好程序管理,估计得三餐不食为其颠倒. 那么,有什么好的服务器推荐呢?站长 ...
- JAVASE(十四) 集合: 数组和集合、Collection、Iterator、List、Set、Map
个人博客网:https://wushaopei.github.io/ (你想要这里多有) 1.数组和集合 1.1 内存中对数据进行存储和管理的“容器”:数组,集合 1.2 数组存储的特点和缺点 ...
- Linux(二) 系统远程访问
个人博客网:https://wushaopei.github.io/ (你想要这里多有) 1. Why?为什么需要远程访问? 人和人之间对话有两种方式,一种是面对面直接交谈,另一种是打电话. 我 ...
- ASP.NET中使用Entity Framework开发登陆注册Demo
这里更多的是当作随身笔记使用,记录一下学到的知识,以便淡忘的时候能快速回顾 当前步骤是该项目的第一部分 第一部分(当前) 第二部分 大完结版本 直接上步骤,有类似的开发登陆注册也可以参考. 登陆注册的 ...
- Java实现 LeetCode 687 最长同值路径(递归)
687. 最长同值路径 给定一个二叉树,找到最长的路径,这个路径中的每个节点具有相同值. 这条路径可以经过也可以不经过根节点. 注意:两个节点之间的路径长度由它们之间的边数表示. 示例 1: 输入: ...
- Java实现 LeetCode 273 整数转换英文表示
273. 整数转换英文表示 将非负整数转换为其对应的英文表示.可以保证给定输入小于 231 - 1 . 示例 1: 输入: 123 输出: "One Hundred Twenty Three ...