要是没有next_permutation这个函数,这些题觉得还不算特别水,不过也不一定,那样可能就会有相应的模板了。反正正是因为next_permutation这个函数,这些题包括之前的POJ1226,都变得简单起来。

排列
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 17486   Accepted: 6970

Description

题目描述: 

大家知道,给出正整数n,则1到n这n个数可以构成n!种排列,把这些排列按照从小到大的顺序(字典顺序)列出,如n=3时,列出1 2 3,1 3 2,2 1 3,2 3 1,3 1 2,3 2 1六个排列。 



任务描述: 

给出某个排列,求出这个排列的下k个排列,如果遇到最后一个排列,则下1排列为第1个排列,即排列1 2 3…n。 

比如:n = 3,k=2 给出排列2 3 1,则它的下1个排列为3 1 2,下2个排列为3 2 1,因此答案为3 2 1。 

Input

第一行是一个正整数m,表示测试数据的个数,下面是m组测试数据,每组测试数据第一行是2个正整数n( 1 <= n < 1024 )和k(1<=k<=64),第二行有n个正整数,是1,2 … n的一个排列。

Output

对于每组输入数据,输出一行,n个数,中间用空格隔开,表示输入排列的下k个排列。

Sample Input

3
3 1
2 3 1
3 1
3 2 1
10 2
1 2 3 4 5 6 7 8 9 10

Sample Output

3 1 2
1 2 3
1 2 3 4 5 6 7 9 8 10

直接用next_permutation这个函数即可。

代码:

#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
#include <string>
#include <cstring>
using namespace std; int num[1030]; int main()
{
int Test,N,Q,i;
cin>>Test;
while(Test--)
{
scanf_s("%d%d",&N,&Q);
for(i=0;i<N;i++)
scanf_s("%d",&num[i]);
for(i=1;i<=Q;i++)
next_permutation(num,num+N);
for(i=0;i<N;i++)
printf("%d ",num[i]);
printf("\n");
}
return 0;
}

Backward Digit Sums
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5072   Accepted: 2923

Description

FJ and his cows enjoy playing a mental game. They write down the numbers from 1 to N (1 <= N <= 10) in a certain order and then sum adjacent numbers to produce a new list with one fewer number. They repeat this until only a single number is left. For example,
one instance of the game (when N=4) might go like this:

    3   1   2   4

      4   3   6

        7   9

         16

Behind FJ's back, the cows have started playing a more difficult game, in which they try to determine the starting sequence from only the final total and the number N. Unfortunately, the game is a bit above FJ's mental arithmetic capabilities. 



Write a program to help FJ play the game and keep up with the cows.

Input

Line 1: Two space-separated integers: N and the final sum.

Output

Line 1: An ordering of the integers 1..N that leads to the given sum. If there are multiple solutions, choose the one that is lexicographically least, i.e., that puts smaller numbers first.

Sample Input

4 16

Sample Output

3 1 2 4

Hint

Explanation of the sample: 



There are other possible sequences, such as 3 2 1 4, but 3 1 2 4 is the lexicographically smallest.

题意是要输出N个数,这N个数是从1到N这些数的一个顺序,这样的顺序按照杨辉三角的模式相加起来等于sum,输出相等时的第一个字典顺序。

一看到N是大于1小于10的我就想暴力了。。。

代码:

#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std; int main()
{
int i,n,sum,a[12];
cin>>n>>sum; for(i=1;i<=10;i++)
a[i]=i;
if(n==1)
{
cout<<1<<endl;
}
else if(n==2)
{
cout<<1<<" "<<2<<endl;
}
else if(n==3)
{
while(1*a[1]+2*a[2]+1*a[3]!=sum)
{
next_permutation(a+1,a+3+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<endl;
}
else if(n==4)
{
while(1*a[1]+3*a[2]+3*a[3]+1*a[4]!=sum)
{
next_permutation(a+1,a+4+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<" "<<a[4]<<endl;
}
else if(n==5)
{
while(1*a[1]+4*a[2]+6*a[3]+4*a[4]+1*a[5]!=sum)
{
next_permutation(a+1,a+5+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<" "<<a[4]<<" "<<a[5]<<endl;
}
else if(n==6)
{
while(1*a[1]+5*a[2]+10*a[3]+10*a[4]+5*a[5]+1*a[6]!=sum)
{
next_permutation(a+1,a+n+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<" "<<a[4]<<" "<<a[5]<<" "<<a[6]<<endl;
}
else if(n==7)
{
while(1*a[1]+6*a[2]+15*a[3]+20*a[4]+15*a[5]+6*a[6]+1*a[7]!=sum)
{
next_permutation(a+1,a+n+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<" "<<a[4]<<" "<<a[5]<<" "<<a[6]<<" "<<a[7]<<endl;
}
else if(n==8)
{
while(1*a[1]+7*a[2]+21*a[3]+35*a[4]+35*a[5]+21*a[6]+7*a[7]+1*a[8]!=sum)
{
next_permutation(a+1,a+n+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<" "<<a[4]<<" "<<a[5]<<" "<<a[6]<<" "<<a[7]<<" "<<a[8]<<endl;
}
else if(n==9)
{
while(1*a[1]+8*a[2]+28*a[3]+56*a[4]+70*a[5]+56*a[6]+28*a[7]+8*a[8]+1*a[9]!=sum)
{
next_permutation(a+1,a+n+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<" "<<a[4]<<" "<<a[5]<<" "<<a[6]<<" "<<a[7]<<" "<<a[8]<<" "<<a[9]<<endl;
}
else if(n==10)
{
while(1*a[1]+9*a[2]+36*a[3]+84*a[4]+126*a[5]+126*a[6]+84*a[7]+36*a[8]+9*a[9]+1*a[10]!=sum)
{
next_permutation(a+1,a+n+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<" "<<a[4]<<" "<<a[5]<<" "<<a[6]<<" "<<a[7]<<" "<<a[8]<<" "<<a[9]<<" "<<a[10]<<endl;
} return 0;
}

The Next Permutation
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 979   Accepted: 717

Description

For this problem, you will write a program that takes a (possibly long) string of decimal digits, and outputs the permutation of those decimal digits that has the next larger value (as a decimal number) than the input number. For example: 



123 -> 132 

279134399742 -> 279134423799 



It is possible that no permutation of the input digits has a larger value. For example, 987.

Input

The first line of input contains a single integer P, (1 ≤ P ≤ 1000), which is the number of data sets that follow. Each data set is a single line that contains the data set number, followed by a space, followed by up to 80 decimal digits which is the input
value.

Output

For each data set there is one line of output. If there is no larger permutation of the input digits, the output should be the data set number followed by a single space, followed by the string BIGGEST. If there is a solution, the output should be the data
set number, a single space and the next larger permutation of the input digits.

Sample Input

3
1 123
2 279134399742
3 987

Sample Output

1 132
2 279134423799
3 BIGGEST

还是直接使用next_permutation。这个函数是有返回值的,返回值是0时表示已经没有下一个字典顺序了,它要变成第一个字典顺序。返回值是1时表示还有字典顺序的下一个顺序,所以利用函数的这个性质就OK了。

代码:

#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std; int main()
{
int Test,num;
char s[100]; cin>>Test;
while(Test--)
{
cin>>num>>s;
cout<<num<<" "; int n=next_permutation(s,s+strlen(s)); if(n==0)
cout<<"BIGGEST"<<endl;
else
cout<<s<<endl;
}
return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ1833 & POJ3187 & POJ3785的更多相关文章

  1. POJ1833 &amp; POJ3187 &amp; POJ3785 next_permutation应用

    要是没有next_permutation这个函数,这些题认为还不算特别水,只是也不一定,那样可能就会有对应的模板了. 反正正是由于next_permutation这个函数.这些题包含之前的POJ122 ...

  2. 《挑战程序设计竞赛》2.1 穷竭搜索 POJ2718 POJ3187 POJ3050 AOJ0525

    POJ2718 Smallest Difference Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6509   Acce ...

  3. POJ-3187 Backward Digit Sums---枚举全排列

    题目链接: https://vjudge.net/problem/POJ-3187 题目大意: 输入n,sum,求1~n的数,如何排列之后,相邻两列相加,直到得出最后的结果等于sum,输出1~n的排列 ...

  4. (DFS、全排列)POJ-3187 Backward Digit Sums

    题目地址 简要题意: 输入两个数n和m,分别表示给你1--n这些整数,将他们按一定顺序摆成一行,按照杨辉三角的计算方式进行求和,求使他们求到最后时结果等于m的排列中字典序最小的一种. 思路分析: 不难 ...

  5. POJ-3187 Backward Digit Sums (暴力枚举)

    http://poj.org/problem?id=3187 给定一个个数n和sum,让你求原始序列,如果有多个输出字典序最小的. 暴力枚举题,枚举生成的每一个全排列,符合即退出. dfs版: #in ...

  6. poj1833 排列

                                                                                                         ...

  7. POJ3187 Backward Digit Sums

    给出杨辉三角的顶点值,求底边各个数的值.直接DFS就好了 #include<iostream> #include<cstdio> #include<cstring> ...

  8. 【搜索】POJ-3187 枚举全排列

    一.题目 Description FJ and his cows enjoy playing a mental game. They write down the numbers from 1 to ...

  9. POJ3187 Backward Digit Sums 【暴搜】

    Backward Digit Sums Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4487   Accepted: 25 ...

随机推荐

  1. js 用于运行string中的<script>和</script>之间的函数

    /** * Created by 炜文 on 2017/2/15. */ var intext = '485222<script> var i=2;var j=2;console.log( ...

  2. Linux CentOS7 VMware 安装软件包的三种方法、rpm包介绍、rpm工具用法、yum工具用法、yum搭建本地仓库

    一.安装软件包的三种方法 Linux下游三种安装方法,rpm工具.yum工具.源码包.rpm按装一个程序包时,有可能因为该程序包依赖另一个程序包而无法安装:yum工具,可以连同依赖的程序包一起安装. ...

  3. SpringBoot 入门demo

    创建SpringBoot项目方式一 (1)新建maven项目,不使用骨架. 使用maven管理依赖就行了,不必使用骨架(模板). (2)在pom.xml中添加 <!--springboot核心. ...

  4. Python入门知识总结【新手必学】

    Python 基础学习输入和输出list 和 tuple条件判断循环dict 和 set感觉python这门语言用途较广,先熟悉下其语法.PS:另外很多人在学习Python的过程中,往往因为没有好的教 ...

  5. iterm2常用快捷键

    标签 新建标签: command + t 关闭标签: command + w 切换标签: command + 数字 command + 左右方向键 切换全屏: command + enter 查找: ...

  6. Java多线程编程之守护线程

    Java的线程分为两种,一个是用户线程,一个是守护线程.守护线程守护的对象就是用户线程,当用户线程结束后,守护它的守护线程也就会结束.二者的本质基本是一样的,唯一区别在于何时结束. 用户线程:直到自己 ...

  7. java 搭积木

    搭积木 小明最近喜欢搭数字积木, 一共有10块积木,每个积木上有一个数字,0~9. 搭积木规则: 每个积木放到其它两个积木的上面,并且一定比下面的两个积木数字小. 最后搭成4层的金字塔形,必须用完所有 ...

  8. P1075 链表元素分类

    P1075 链表元素分类 转跳点:

  9. 用 Heapster 监控集群【转】

    Heapster 是 Kubernetes 原生的集群监控方案.Heapster 以 Pod 的形式运行,它会自动发现集群节点.从节点上的 Kubelet 获取监控数据.Kubelet 则是从节点上的 ...

  10. phpStudy隐藏后门预警

    1.事件背景 近日,使用广泛的PHP环境集成程序包phpStudy被公告疑似遭遇供应链攻击,程序包自带PHP的php_xmlrpc.dll模块隐藏有后门,安恒应急响应中心和研究院随即对国内下载站点提供 ...