\[\Large \text{The Proof of Fibonacci GCD}\]
\[\text{By Sangber}\]


\(\text{Fibonacci Sequence}\)

\(\quad \quad \text{If we record sequence}\ \{F_n\}\ \text{as Fibonacci Sequence, then }\{F_n\} \text{ will have these properties:}\)

\[F_i = \begin{cases}1, & i\leq 2 \\ F_{i-1} + F_{i-2}, & \mathrm{otherwise}\end{cases}\]

\(\quad \quad \text{So we can see that } \{F_n\} \text{ is like “1,1,2,3,5,8,13,21...”.}\)


\(\text{GCD}\)

\(\quad \quad \text{“GCD” is the abbreviation of “Greatest Common Divisor”.}\)
\(\quad \quad \text{And we often record } (a, b) \text{ as the GCD of } a \text{ and } b.\)
\(\quad \quad \text{For example, } (12, 15) = 3, (48, 36) = 12.\)


\(\text{Two Theorems about GCD}\)

\(\text{Euclidean theorem}\)

\[(a, b) = (b, a \bmod b), a, b \in N_{+}\]
\(\text{The proof: }\)

  • \(\text{If } a = b, (a, b) = a = b, \text{we can surely tell that the theorem is established.}\)
  • \(\text{If } a < b, (b, a \bmod b) = (b, a) = (a, b), \text{the theorem is established.}\)
  • \(\text{If } a > b, \text{we can assume that } a = k \times b + r, (k \in N_{+}, 0 \le r < b), \text{ so } a \bmod b = r. \\ \text{As for } \forall d, \text{meeting that } d|a \land d|b, d|(a - k \times b), \text{ actually it means } d | r. \\ \text{So we can tell that } (a, b) = (b, r), \text{ that is, } (a, b) = (b, a \bmod b).\)

\(\text{Stein's Algorithm}\)

\[(a, b) = (a, b - a),b > a\]
\(\text{The proof:}\)
\(\text{Actually, the proof of it is similar to that of Euclidean theorem, you can finish it yourselves.}\)


\(\text{One Lemma}\)

\[(F_n,F_{n - 1})=1, n \in N_{+}\]
\(\text{The Proof}\):

  • \(\text{In the case of } n = 1 \text{ and } n = 2,\text{ the lemma is established obviously.}\)
  • \(\text{In the case of } n \ge 2 :\)
    \(\text{Obviously:}\)
    \[F_n > F_{n - 1} > F_{n - 2}, F_n = F_{n - 1} + F_{n - 2}\]
    \[\therefore F_n\ \bmod F_{n - 1} = F_{n - 2}\]
    \(\quad \ \text{According to Euclidean theorem and the lemma above:}\)
    \[(F_n,F_{n-1})=(F_{n-1},F_n\ \bmod\ F_{n-1})=(F_{n-1},F_{n-2})\]
    \[\therefore (F_n,F_{n-1})=(F_{n-1},F_{n-2})=(F_{n-2},F_{n-3})= \cdots =(F_1,F_2)=1\]

\(\text{Fibonacci GCD}\)

\(\quad \quad \text{Here is the expression of the Fibonacci GCD:}\)

\[\forall n,m \in \text{Z}^{+},(F_n, F_m) = F_{(n, m)}\]


\(\text{The Proof of Fibonacci GCD}\)

\(\text{We assume that } n<m.\)
\(\text{Then we use } F_n \text{ and }F_{n+1} \text{ to express } F_{n + 2},F_{n + 3},F_{n + 4},F_{n + 5}\cdots\)

\[
\begin{aligned}
& F_{n + 2} = 1 F_n + 1 F_{n + 1} \\
& F_{n + 3} = 1 F_n + 2 F_{n + 1} \\
& F_{n + 4} = 2 F_n + 3 F_{n + 1} \\
& F_{n + 5} = 3 F_n + 5 F_{n + 1}
\end{aligned} \\
\cdots \cdots
\]

\(\text{We can see that in the expressions above, the coefficients of } F_n \text{ and } F_{n + 1} \text{ meet the properties of the Fibonacci Sequence.}\)
\[\therefore F_m=F_{m - n - 1} \times F_n + F_{m - n} \times F_{n + 1}\]
\[\therefore (F_n, F_m) = (F_n, F_{m - n - 1} \times F_n + F_{m - n} \times F_{n + 1})\]
\(\text{And obviously we can see that :}\)
\[F_n|F_{m-n-1}\times F_n\]
\[\therefore (F_n,F_m)=(F_n,F_{m-n}\times F_{n+1})\]

\(\text{According to the lemma above:}\)
\[(F_n, F_{n + 1}) = 1\]
\[\therefore (F_n, F_m) = (F_n, F_{m - n})\]

\(\text{All in all:}\)
\[\text{If }n<m,(F_n,F_m)=(F_n,F_{m-n})\]

\(\text{We can see that }, \text{the change rule of } n \text{ and } m \text{ meet Stein's Algorithm,so we finally discovered that }\)
\[(F_n,F_m)=F_{(n,m)}\]


\[\Large \text{That's all, thanks!}\]
\[\Huge Q\omega Q\]

The Proof of Fibonacci GCD的更多相关文章

  1. 【前端】Util.js-ES6实现的常用100多个javaScript简短函数封装合集(持续更新中)

    Util.js (持续更新中...) 项目地址: https://github.com/dragonir/Util.js 项目描述 Util.js 是对常用函数的封装,方便在实际项目中使用,主要内容包 ...

  2. 收集有用的 Javascript 片段

    内容目录 数组 arrayMax arrayMin chunk compact countOccurrences deepFlatten difference distinctValuesOfArra ...

  3. 关于斐波拉契数列(Fibonacci)

    斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10 ...

  4. 使用并行的方法计算斐波那契数列 (Fibonacci)

    更新:我的同事Terry告诉我有一种矩阵运算的方式计算斐波那契数列,更适于并行.他还提供了利用TBB的parallel_reduce模板计算斐波那契数列的代码(在TBB示例代码的基础上修改得来,比原始 ...

  5. (转)Fibonacci Tilings

    Fibonacci numbers {Fn, n ≥ 0} satisfy the recurrence relation (1) Fn+2 = Fn+1 + Fn, along with the i ...

  6. fibonacci数列的性质和实现方法

    fibonacci数列的性质和实现方法 1.gcd(fib(n),fib(m))=fib(gcd(n,m)) 证明:可以通过反证法先证fibonacci数列的任意相邻两项一定互素,然后可证n>m ...

  7. BZOJ 2813: 奇妙的Fibonacci

    2813: 奇妙的Fibonacci Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 497  Solved: 134[Submit][Status][ ...

  8. Codeforces 902D/901B - GCD of Polynomials

    传送门:http://codeforces.com/contest/902/problem/D 本题是一个数学问题——多项式整除. 对于两个整数a.b,求最大公约数gcd(a,b)的辗转相除法的函数如 ...

  9. 【学习笔记】关于最大公约数(gcd)的定理

    手动博客搬家: 本文发表于20181004 00:21:28, 原地址https://blog.csdn.net/suncongbo/article/details/82935140 结论1 \[\g ...

随机推荐

  1. ArrayList、Vector和LinkedList

    List接口特点 1.有序的 collection. 2.可以对列表中每个元素的插入位置进行精确地控制. 3.可以根据元素的索引访问元素,并搜索列表中的元素. 4.列表通常允许重复的元素. 5.允许存 ...

  2. 吴裕雄--天生自然Numpy库学习笔记:Numpy 数组操作

    import numpy as np a = np.arange(8) print ('原始数组:') print (a) print ('\n') b = a.reshape(4,2) print ...

  3. VUE父子组件相互传值

    passer.vue中代码 首先在文件中引入组件 import canvasDraw from '@/components/CanvasDraw/canvasDraw' 局部注册组件:componen ...

  4. kafka创建topic报错

    kafka执行如下创建topic的语句: [root@node01 kafka_2.11-1.0.0]# bin/kafka-topics.sh --create --topic streaming- ...

  5. [原]Java工程打包注意事项

    注意事项(持续增加...): 如果Java工程中用到了注解,在用eclipse打jar包时需要注意一下,勾上“Add directory entries”,否则注解的类会注册不上

  6. redhat 7.6 iptables 配置

    1.查看iptables默认表(filter) iptables -L -n 2.iptables 默认内链(filter)表三种: INPUT:处理进入防火墙的数据包 FORWARD:源自其他计算机 ...

  7. linux关闭进程

    查看端口对应的pid lsof -i:8888 若要关闭使用这个端口的程序,使用kill + 对应的pid kill -9 PID号

  8. Redis实战(20)Redis 如何从海量数据中查询出某一个 Key?

    序言 资料 https://www.cnblogs.com/vipstone/p/12373734.html

  9. Linux--info命令 ,help命令,man命令(帮助)

    Info和man命令一样都是帮助类文件 Info文件不仅包含信息,而且还包含连接到其他info文件的链接. 如何使用info显示希望的内容 * 如何操纵Info系统 * 如何显示Info的帮助信息. ...

  10. 华为平板暴力禁用wifi

    删除以下配置文件及动态链接库: /system/etc/wifi/* /system/etc/permission/*wifi* /system/lib/*wifi*