\[\Large \text{The Proof of Fibonacci GCD}\]
\[\text{By Sangber}\]


\(\text{Fibonacci Sequence}\)

\(\quad \quad \text{If we record sequence}\ \{F_n\}\ \text{as Fibonacci Sequence, then }\{F_n\} \text{ will have these properties:}\)

\[F_i = \begin{cases}1, & i\leq 2 \\ F_{i-1} + F_{i-2}, & \mathrm{otherwise}\end{cases}\]

\(\quad \quad \text{So we can see that } \{F_n\} \text{ is like “1,1,2,3,5,8,13,21...”.}\)


\(\text{GCD}\)

\(\quad \quad \text{“GCD” is the abbreviation of “Greatest Common Divisor”.}\)
\(\quad \quad \text{And we often record } (a, b) \text{ as the GCD of } a \text{ and } b.\)
\(\quad \quad \text{For example, } (12, 15) = 3, (48, 36) = 12.\)


\(\text{Two Theorems about GCD}\)

\(\text{Euclidean theorem}\)

\[(a, b) = (b, a \bmod b), a, b \in N_{+}\]
\(\text{The proof: }\)

  • \(\text{If } a = b, (a, b) = a = b, \text{we can surely tell that the theorem is established.}\)
  • \(\text{If } a < b, (b, a \bmod b) = (b, a) = (a, b), \text{the theorem is established.}\)
  • \(\text{If } a > b, \text{we can assume that } a = k \times b + r, (k \in N_{+}, 0 \le r < b), \text{ so } a \bmod b = r. \\ \text{As for } \forall d, \text{meeting that } d|a \land d|b, d|(a - k \times b), \text{ actually it means } d | r. \\ \text{So we can tell that } (a, b) = (b, r), \text{ that is, } (a, b) = (b, a \bmod b).\)

\(\text{Stein's Algorithm}\)

\[(a, b) = (a, b - a),b > a\]
\(\text{The proof:}\)
\(\text{Actually, the proof of it is similar to that of Euclidean theorem, you can finish it yourselves.}\)


\(\text{One Lemma}\)

\[(F_n,F_{n - 1})=1, n \in N_{+}\]
\(\text{The Proof}\):

  • \(\text{In the case of } n = 1 \text{ and } n = 2,\text{ the lemma is established obviously.}\)
  • \(\text{In the case of } n \ge 2 :\)
    \(\text{Obviously:}\)
    \[F_n > F_{n - 1} > F_{n - 2}, F_n = F_{n - 1} + F_{n - 2}\]
    \[\therefore F_n\ \bmod F_{n - 1} = F_{n - 2}\]
    \(\quad \ \text{According to Euclidean theorem and the lemma above:}\)
    \[(F_n,F_{n-1})=(F_{n-1},F_n\ \bmod\ F_{n-1})=(F_{n-1},F_{n-2})\]
    \[\therefore (F_n,F_{n-1})=(F_{n-1},F_{n-2})=(F_{n-2},F_{n-3})= \cdots =(F_1,F_2)=1\]

\(\text{Fibonacci GCD}\)

\(\quad \quad \text{Here is the expression of the Fibonacci GCD:}\)

\[\forall n,m \in \text{Z}^{+},(F_n, F_m) = F_{(n, m)}\]


\(\text{The Proof of Fibonacci GCD}\)

\(\text{We assume that } n<m.\)
\(\text{Then we use } F_n \text{ and }F_{n+1} \text{ to express } F_{n + 2},F_{n + 3},F_{n + 4},F_{n + 5}\cdots\)

\[
\begin{aligned}
& F_{n + 2} = 1 F_n + 1 F_{n + 1} \\
& F_{n + 3} = 1 F_n + 2 F_{n + 1} \\
& F_{n + 4} = 2 F_n + 3 F_{n + 1} \\
& F_{n + 5} = 3 F_n + 5 F_{n + 1}
\end{aligned} \\
\cdots \cdots
\]

\(\text{We can see that in the expressions above, the coefficients of } F_n \text{ and } F_{n + 1} \text{ meet the properties of the Fibonacci Sequence.}\)
\[\therefore F_m=F_{m - n - 1} \times F_n + F_{m - n} \times F_{n + 1}\]
\[\therefore (F_n, F_m) = (F_n, F_{m - n - 1} \times F_n + F_{m - n} \times F_{n + 1})\]
\(\text{And obviously we can see that :}\)
\[F_n|F_{m-n-1}\times F_n\]
\[\therefore (F_n,F_m)=(F_n,F_{m-n}\times F_{n+1})\]

\(\text{According to the lemma above:}\)
\[(F_n, F_{n + 1}) = 1\]
\[\therefore (F_n, F_m) = (F_n, F_{m - n})\]

\(\text{All in all:}\)
\[\text{If }n<m,(F_n,F_m)=(F_n,F_{m-n})\]

\(\text{We can see that }, \text{the change rule of } n \text{ and } m \text{ meet Stein's Algorithm,so we finally discovered that }\)
\[(F_n,F_m)=F_{(n,m)}\]


\[\Large \text{That's all, thanks!}\]
\[\Huge Q\omega Q\]

The Proof of Fibonacci GCD的更多相关文章

  1. 【前端】Util.js-ES6实现的常用100多个javaScript简短函数封装合集(持续更新中)

    Util.js (持续更新中...) 项目地址: https://github.com/dragonir/Util.js 项目描述 Util.js 是对常用函数的封装,方便在实际项目中使用,主要内容包 ...

  2. 收集有用的 Javascript 片段

    内容目录 数组 arrayMax arrayMin chunk compact countOccurrences deepFlatten difference distinctValuesOfArra ...

  3. 关于斐波拉契数列(Fibonacci)

    斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10 ...

  4. 使用并行的方法计算斐波那契数列 (Fibonacci)

    更新:我的同事Terry告诉我有一种矩阵运算的方式计算斐波那契数列,更适于并行.他还提供了利用TBB的parallel_reduce模板计算斐波那契数列的代码(在TBB示例代码的基础上修改得来,比原始 ...

  5. (转)Fibonacci Tilings

    Fibonacci numbers {Fn, n ≥ 0} satisfy the recurrence relation (1) Fn+2 = Fn+1 + Fn, along with the i ...

  6. fibonacci数列的性质和实现方法

    fibonacci数列的性质和实现方法 1.gcd(fib(n),fib(m))=fib(gcd(n,m)) 证明:可以通过反证法先证fibonacci数列的任意相邻两项一定互素,然后可证n>m ...

  7. BZOJ 2813: 奇妙的Fibonacci

    2813: 奇妙的Fibonacci Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 497  Solved: 134[Submit][Status][ ...

  8. Codeforces 902D/901B - GCD of Polynomials

    传送门:http://codeforces.com/contest/902/problem/D 本题是一个数学问题——多项式整除. 对于两个整数a.b,求最大公约数gcd(a,b)的辗转相除法的函数如 ...

  9. 【学习笔记】关于最大公约数(gcd)的定理

    手动博客搬家: 本文发表于20181004 00:21:28, 原地址https://blog.csdn.net/suncongbo/article/details/82935140 结论1 \[\g ...

随机推荐

  1. loadrunner测试sql语句性能

    最初的想法是是想通过录制在SQL Server2008的操作来着的,无奈试了即便都录不到查询的sql语句,网上查资料全是关于SQL 2000的(这部分有经验的欢迎指教). 于是只能通过直接调用load ...

  2. python中的type和object详解

    关于这篇博客 这篇博客主要描述Python的新风格对象(new-style objects),如下: <type 'type'>和<type 'object'>分别是什么? 用 ...

  3. ASA-ACL类型

    安全设备支持下面5种不同类型的ACl: 标准ACL 扩展ACL(可匹配v4&v6流量) EtherType ACL (以太网类型ACL) WebType ACL(Web类型ACL) 1.标准A ...

  4. 树莓派4B踩坑指南 - (9)安装Git和Docker

    安装Git sudo apt-get install wget git-core 安装Docker curl -sSL https://get.docker.com | sh # 树莓派专属脚本福利, ...

  5. 「国家集训队」middle

    「国家集训队」middle 传送门 按照中位数题的套路,二分答案 \(mid\),序列中 \(\ge mid\) 记为 \(1\),\(< mid\) 的记为 \(-1\) 然后只要存在一个区间 ...

  6. Python 爬取 热词并进行分类数据分析-[数据修复]

    日期:2020.02.01 博客期:140 星期六 [本博客的代码如若要使用,请在下方评论区留言,之后再用(就是跟我说一声)] 所有相关跳转: a.[简单准备] b.[云图制作+数据导入] c.[拓扑 ...

  7. 解决Hibernate配置文件不在SRC文件夹下获取Session方法

  8. Java 自定义DateUtils

    1 /* Date d = new Date(); String s = DateUtils.DateToString(d, "yyyy-MM-dd HH:mm:ss"); Sys ...

  9. 关于Android Studio中点9图的编译错误问题

    Android中的点9图想必大家都非常熟悉了,能够指定背景图片的缩放区域和文本内容的显示区域,常见如QQ聊天界面的背景气泡这种文本内容不固定并需要适配的应用场景. 这里也给大家准备了一张图,详细介绍了 ...

  10. Thymeleaf的内置属性(转)

    原文链接: http://somefuture.iteye.com/blog/2253761 Thymeleaf是另一个Java视图模板引擎,使用上和FreeMarker各有千秋,不了解的可以从其他博 ...