\[\Large \text{The Proof of Fibonacci GCD}\]
\[\text{By Sangber}\]


\(\text{Fibonacci Sequence}\)

\(\quad \quad \text{If we record sequence}\ \{F_n\}\ \text{as Fibonacci Sequence, then }\{F_n\} \text{ will have these properties:}\)

\[F_i = \begin{cases}1, & i\leq 2 \\ F_{i-1} + F_{i-2}, & \mathrm{otherwise}\end{cases}\]

\(\quad \quad \text{So we can see that } \{F_n\} \text{ is like “1,1,2,3,5,8,13,21...”.}\)


\(\text{GCD}\)

\(\quad \quad \text{“GCD” is the abbreviation of “Greatest Common Divisor”.}\)
\(\quad \quad \text{And we often record } (a, b) \text{ as the GCD of } a \text{ and } b.\)
\(\quad \quad \text{For example, } (12, 15) = 3, (48, 36) = 12.\)


\(\text{Two Theorems about GCD}\)

\(\text{Euclidean theorem}\)

\[(a, b) = (b, a \bmod b), a, b \in N_{+}\]
\(\text{The proof: }\)

  • \(\text{If } a = b, (a, b) = a = b, \text{we can surely tell that the theorem is established.}\)
  • \(\text{If } a < b, (b, a \bmod b) = (b, a) = (a, b), \text{the theorem is established.}\)
  • \(\text{If } a > b, \text{we can assume that } a = k \times b + r, (k \in N_{+}, 0 \le r < b), \text{ so } a \bmod b = r. \\ \text{As for } \forall d, \text{meeting that } d|a \land d|b, d|(a - k \times b), \text{ actually it means } d | r. \\ \text{So we can tell that } (a, b) = (b, r), \text{ that is, } (a, b) = (b, a \bmod b).\)

\(\text{Stein's Algorithm}\)

\[(a, b) = (a, b - a),b > a\]
\(\text{The proof:}\)
\(\text{Actually, the proof of it is similar to that of Euclidean theorem, you can finish it yourselves.}\)


\(\text{One Lemma}\)

\[(F_n,F_{n - 1})=1, n \in N_{+}\]
\(\text{The Proof}\):

  • \(\text{In the case of } n = 1 \text{ and } n = 2,\text{ the lemma is established obviously.}\)
  • \(\text{In the case of } n \ge 2 :\)
    \(\text{Obviously:}\)
    \[F_n > F_{n - 1} > F_{n - 2}, F_n = F_{n - 1} + F_{n - 2}\]
    \[\therefore F_n\ \bmod F_{n - 1} = F_{n - 2}\]
    \(\quad \ \text{According to Euclidean theorem and the lemma above:}\)
    \[(F_n,F_{n-1})=(F_{n-1},F_n\ \bmod\ F_{n-1})=(F_{n-1},F_{n-2})\]
    \[\therefore (F_n,F_{n-1})=(F_{n-1},F_{n-2})=(F_{n-2},F_{n-3})= \cdots =(F_1,F_2)=1\]

\(\text{Fibonacci GCD}\)

\(\quad \quad \text{Here is the expression of the Fibonacci GCD:}\)

\[\forall n,m \in \text{Z}^{+},(F_n, F_m) = F_{(n, m)}\]


\(\text{The Proof of Fibonacci GCD}\)

\(\text{We assume that } n<m.\)
\(\text{Then we use } F_n \text{ and }F_{n+1} \text{ to express } F_{n + 2},F_{n + 3},F_{n + 4},F_{n + 5}\cdots\)

\[
\begin{aligned}
& F_{n + 2} = 1 F_n + 1 F_{n + 1} \\
& F_{n + 3} = 1 F_n + 2 F_{n + 1} \\
& F_{n + 4} = 2 F_n + 3 F_{n + 1} \\
& F_{n + 5} = 3 F_n + 5 F_{n + 1}
\end{aligned} \\
\cdots \cdots
\]

\(\text{We can see that in the expressions above, the coefficients of } F_n \text{ and } F_{n + 1} \text{ meet the properties of the Fibonacci Sequence.}\)
\[\therefore F_m=F_{m - n - 1} \times F_n + F_{m - n} \times F_{n + 1}\]
\[\therefore (F_n, F_m) = (F_n, F_{m - n - 1} \times F_n + F_{m - n} \times F_{n + 1})\]
\(\text{And obviously we can see that :}\)
\[F_n|F_{m-n-1}\times F_n\]
\[\therefore (F_n,F_m)=(F_n,F_{m-n}\times F_{n+1})\]

\(\text{According to the lemma above:}\)
\[(F_n, F_{n + 1}) = 1\]
\[\therefore (F_n, F_m) = (F_n, F_{m - n})\]

\(\text{All in all:}\)
\[\text{If }n<m,(F_n,F_m)=(F_n,F_{m-n})\]

\(\text{We can see that }, \text{the change rule of } n \text{ and } m \text{ meet Stein's Algorithm,so we finally discovered that }\)
\[(F_n,F_m)=F_{(n,m)}\]


\[\Large \text{That's all, thanks!}\]
\[\Huge Q\omega Q\]

The Proof of Fibonacci GCD的更多相关文章

  1. 【前端】Util.js-ES6实现的常用100多个javaScript简短函数封装合集(持续更新中)

    Util.js (持续更新中...) 项目地址: https://github.com/dragonir/Util.js 项目描述 Util.js 是对常用函数的封装,方便在实际项目中使用,主要内容包 ...

  2. 收集有用的 Javascript 片段

    内容目录 数组 arrayMax arrayMin chunk compact countOccurrences deepFlatten difference distinctValuesOfArra ...

  3. 关于斐波拉契数列(Fibonacci)

    斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10 ...

  4. 使用并行的方法计算斐波那契数列 (Fibonacci)

    更新:我的同事Terry告诉我有一种矩阵运算的方式计算斐波那契数列,更适于并行.他还提供了利用TBB的parallel_reduce模板计算斐波那契数列的代码(在TBB示例代码的基础上修改得来,比原始 ...

  5. (转)Fibonacci Tilings

    Fibonacci numbers {Fn, n ≥ 0} satisfy the recurrence relation (1) Fn+2 = Fn+1 + Fn, along with the i ...

  6. fibonacci数列的性质和实现方法

    fibonacci数列的性质和实现方法 1.gcd(fib(n),fib(m))=fib(gcd(n,m)) 证明:可以通过反证法先证fibonacci数列的任意相邻两项一定互素,然后可证n>m ...

  7. BZOJ 2813: 奇妙的Fibonacci

    2813: 奇妙的Fibonacci Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 497  Solved: 134[Submit][Status][ ...

  8. Codeforces 902D/901B - GCD of Polynomials

    传送门:http://codeforces.com/contest/902/problem/D 本题是一个数学问题——多项式整除. 对于两个整数a.b,求最大公约数gcd(a,b)的辗转相除法的函数如 ...

  9. 【学习笔记】关于最大公约数(gcd)的定理

    手动博客搬家: 本文发表于20181004 00:21:28, 原地址https://blog.csdn.net/suncongbo/article/details/82935140 结论1 \[\g ...

随机推荐

  1. The Preliminary Contest for ICPC Asia Nanjing 2019 - D Robots(概率dp+拓扑排序)

    这题概率dp + 拓扑排序可以写 改天补解释 #include <bits/stdc++.h> using namespace std; const int maxn=1e5+10; ve ...

  2. ModBus的小于3.5S间隔的理解

    modbus协议中规定:至少3.5个字符传输时间的停顿间隔时间标志了消息的结束. 我的理解如下:约定参数:9600bps,8数据位,无奇偶校验,1起始位,1停止位. 9600bps代表在9600的波特 ...

  3. maven打jar包(包括依赖jar)

    <build> <plugins> <plugin> <artifactId> maven-assembly-plugin </artifactI ...

  4. MYSQL---外键 primary key 作用

    https://www.cnblogs.com/x739400043/p/4732158.html 外键和级联   关于外键写的不错的网址:http://blog.csdn.net/lidaasky/ ...

  5. leetcode 0218

    目录 ✅ 1200. 最小绝对差 描述 解答 cpp py ✅ 897. 递增顺序查找树 描述 解答 cpp 指针问题? fuck ptr py ✅ 183. 从不订购的客户 描述 解答 sql to ...

  6. kaggle赛题Digit Recognizer:利用TensorFlow搭建神经网络(附上K邻近算法模型预测)

    一.前言 kaggle上有传统的手写数字识别mnist的赛题,通过分类算法,将图片数据进行识别.mnist数据集里面,包含了42000张手写数字0到9的图片,每张图片为28*28=784的像素,所以整 ...

  7. MAVLINK协议

    参考https://cloud.tencent.com/developer/news/48344 https://www.cnblogs.com/lovechen/p/5801679.html htt ...

  8. iOS 开发之应用内弹出 App Store 应用界面

    在APP内给其他APP做推广,经常用到在应用内弹出应用的APP #import <StoreKit/SKStoreProductViewController.h> 设置代理:<SKS ...

  9. 高级T-SQL进阶系列 (一)【中篇】:使用 CROSS JOIN 介绍高级T-SQL

    [译注:此文为翻译,由于本人水平所限,疏漏在所难免,欢迎探讨指正] 原文连接:传送门. 当一个CROSS JOIN 表现得如同一个INNER JOIN 在上一章节我提到当你使用一个CROSS JOIN ...

  10. jquery中 $(xxx).each() 和 $.each()的区别,以及enter键一键登录

    1.$().each 在dom处理上面用的较多.如果页面有多个input标签类型为text,对于这时用$().each来处理多个text,例如: $("input[type=’text’]& ...