01 交换变量

>>>a=3

>>>b=6

这个情况如果要交换变量在c++中,肯定需要一个空变量。但是python不需要,只需一行,大家看清楚了

>>>a,b=b,a

>>>print(a)>>>6

>>>ptint(b)>>>5

02 字典推导(Dictionary comprehensions)和集合推导(Set comprehensions)
大多数的Python程序员都知道且使用过列表推导(list comprehensions)。如果你对list comprehensions概念不是很熟悉——一个list comprehension就是一个更简短、简洁的创建一个list的方法。

>>> some_list = [1, 2, 3, 4, 5]

>>> another_list = [ x + 1 for x in some_list ]

>>> another_list
[2, 3, 4, 5, 6]

自从python 3.1 起,我们可以用同样的语法来创建集合和字典表:

>>> # Set Comprehensions
>>> some_list = [1, 2, 3, 4, 5, 2, 5, 1, 4, 8]

>>> even_set = { x for x in some_list if x % 2 == 0 }

>>> even_set
set([8, 2, 4])

>>> # Dict Comprehensions

>>> d = { x: x % 2 == 0 for x in range(1, 11) }

>>> d
{1: False, 2: True, 3: False, 4: True, 5: False, 6: True, 7: False, 8: True, 9: False, 10: True}

在第一个例子里,我们以some_list为基础,创建了一个具有不重复元素的集合,而且集合里只包含偶数。而在字典表的例子里,我们创建了一个key是不重复的1到10之间的整数,value是布尔型,用来指示key是否是偶数。

这里另外一个值得注意的事情是集合的字面量表示法。我们可以简单的用这种方法创建一个集合:

>>> my_set = {1, 2, 1, 2, 3, 4}

>>> my_set
set([1, 2, 3, 4])

而不需要使用内置函数set()。

03 计数时使用Counter计数对象。
这听起来显而易见,但经常被人忘记。对于大多数程序员来说,数一个东西是一项很常见的任务,而且在大多数情况下并不是很有挑战性的事情——这里有几种方法能更简单的完成这种任务。

Python的collections类库里有个内置的dict类的子类,是专门来干这种事情的:

>>> from collections import Counter
>>> c = Counter( hello world )

>>> c
Counter({ l : 3,  o : 2,    : 1,  e : 1,  d : 1,  h : 1,  r : 1,  w : 1})

>>> c.most_common(2)
[( l , 3), ( o , 2)]

04 漂亮的打印出JSON
JSON是一种非常好的数据序列化的形式,被如今的各种API和web service大量的使用。使用python内置的json处理,可以使JSON串具有一定的可读性,但当遇到大型数据时,它表现成一个很长的、连续的一行时,人的肉眼就很难观看了。

为了能让JSON数据表现的更友好,我们可以使用indent参数来输出漂亮的JSON。当在控制台交互式编程或做日志时,这尤其有用:

>>> import json

>>> print(json.dumps(data))  # No indention
{"status": "OK", "count": 2, "results": [{"age": 27, "name": "Oz", "lactose_intolerant": true}, {"age": 29, "name": "Joe", "lactose_intolerant": false}]}

>>> print(json.dumps(data, indent=2))  # With indention

{
  "status": "OK",
  "count": 2,
  "results": [

{
      "age": 27,
      "name": "Oz",

"lactose_intolerant": true
    },
    {
      "age": 29,

"name": "Joe",
      "lactose_intolerant": false
    }
  ]

}

同样,使用内置的pprint模块,也可以让其它任何东西打印输出的更漂亮。

05 解决FizzBuzz

前段时间Jeff Atwood 推广了一个简单的编程练习叫FizzBuzz,问题引用如下:

写一个程序,打印数字1到100,3的倍数打印“Fizz”来替换这个数,5的倍数打印“Buzz”,对于既是3的倍数又是5的倍数的数字打印“FizzBuzz”。

这里就是一个简短的,有意思的方法解决这个问题:

for x in range(1,101):
    print"fizz"[x%3*len( fizz )::]+"buzz"[x%5*len( buzz )::] or x

06 if 语句在行内

print "Hello" if True else "World"
>>> Hello

07 连接

下面的最后一种方式在绑定两个不同类型的对象时显得很cool。

nfc = ["Packers", "49ers"]
afc = ["Ravens", "Patriots"]
print nfc + afc
>>> [ Packers ,  49ers ,  Ravens ,  Patriots ]

print str(1) + " world"
>>> 1 world

print `1` + " world"
>>> 1 world

print 1, "world"
>>> 1 world
print nfc, 1
>>> [ Packers ,  49ers ] 1

08 数值比较

这是我见过诸多语言中很少有的如此棒的简便法

x = 2
if 3 > x > 1:
   print x
>>> 2
if 1 < x > 0:
   print x
>>> 2

09 同时迭代两个列表

nfc = ["Packers", "49ers"]
afc = ["Ravens", "Patriots"]
for teama, teamb in zip(nfc, afc):
     print teama + " vs. " + teamb
>>> Packers vs. Ravens
>>> 49ers vs. Patriots

10 带索引的列表迭代

teams = ["Packers", "49ers", "Ravens", "Patriots"]
for index, team in enumerate(teams):
    print index, team
>>> 0 Packers
>>> 1 49ers
>>> 2 Ravens
>>> 3 Patriots

11 列表推导式

已知一个列表,我们可以刷选出偶数列表方法:

numbers = [1,2,3,4,5,6]
even = []
for number in numbers:
    if number%2 == 0:
        even.append(number)

转变成如下:

numbers = [1,2,3,4,5,6]
even = [number for number in numbers if number%2 == 0]

12 字典推导

和列表推导类似,字典可以做同样的工作:

teams = ["Packers", "49ers", "Ravens", "Patriots"]
print {key: value for value, key in enumerate(teams)}
>>> { 49ers : 1,  Ravens : 2,  Patriots : 3,  Packers : 0}

13 初始化列表的值

items = [0]*3
print items
>>> [0,0,0]

14 列表转换为字符串

teams = ["Packers", "49ers", "Ravens", "Patriots"]
print ", ".join(teams)
>>>  Packers, 49ers, Ravens, Patriots

15 从字典中获取元素

我承认try/except代码并不雅致,不过这里有一种简单方法,尝试在字典中找key,如果没有找到对应的alue将用第二个参数设为其变量值。

data = { user : 1,  name :  Max ,  three : 4}
try:
   is_admin = data[ admin ]
except KeyError:
   is_admin = False

替换成这样

data = { user : 1,  name :  Max ,  three : 4}
is_admin = data.get( admin , False)

16 获取列表的子集

有时,你只需要列表中的部分元素,这里是一些获取列表子集的方法。

x = [1,2,3,4,5,6]
#前3个
print x[:3]
>>> [1,2,3]
#中间4个
print x[1:5]
>>> [2,3,4,5]
#最后3个
print x[3:]
>>> [4,5,6]
#奇数项
print x[::2]
>>> [1,3,5]
#偶数项
print x[1::2]
>>> [2,4,6]

除了python内置的数据类型外,在collection模块同样还包括一些特别的用例,在有些场合Counter非常实用。如果你参加过在这一年的Facebook HackerCup,你甚至也能找到他的实用之处。

from collections import Counter
print Counter("hello")
>>> Counter({ l : 2,  h : 1,  e : 1,  o : 1})

17 迭代工具

和collections库一样,还有一个库叫itertools,对某些问题真能高效地解决。其中一个用例是查找所有组合,他能告诉你在一个组中元素的所有不能的组合方式

from itertools import combinations
teams = ["Packers", "49ers", "Ravens", "Patriots"]
for game in combinations(teams, 2):
    print game
>>> ( Packers ,  49ers )
>>> ( Packers ,  Ravens )
>>> ( Packers ,  Patriots )
>>> ( 49ers ,  Ravens )
>>> ( 49ers ,  Patriots )
>>> ( Ravens ,  Patriots )

18 False == True

比起实用技术来说这是一个很有趣的事,在python中,True和False是全局变量,因此:

False = True
if False:
   print "Hello"
else:
   print "World"
>>> Hello
---------------------
作者:一起学Python呀
来源:CSDN
原文:https://blog.csdn.net/qq_42156420/article/details/88715478
版权声明:本文为博主原创文章,转载请附上博文链接!

18个python的高效编程技巧的更多相关文章

  1. 18个Python高效编程技巧,Mark!

    初识Python语言,觉得python满足了我上学时候对编程语言的所有要求.python语言的高效编程技巧让我们这些大学曾经苦逼学了四年c或者c++的人,兴奋的不行不行的,终于解脱了.高级语言,如果做 ...

  2. Python 高效编程技巧实战(2-1)如何在列表,字典, 集合中根据条件筛选数据

    Python 高效编程技巧实战(2-1)如何在列表,字典, 集合中根据条件筛选数据 学习目标 1.学会使用 filter 借助 Lambda 表达式过滤列表.集合.元组中的元素: 2.学会使用列表解析 ...

  3. Python高效编程技巧实战 实战编程+面试典型问题 中高阶程序员过渡

    下载链接:https://www.yinxiangit.com/603.html 目录:   如果你想用python从事多个领域的开发工作,且有一些python基础, 想进一步提高python应用能力 ...

  4. 【Matlab编程】Matlab高效编程技巧

    1.默认状态下,matlab显示精度是short型,而默认的计算精度是double型,并且显示精度与计算精度没有关系. 2. 一只失明的猫的问题:注意方法! 3.给数组预分配空间是基本的高效编程准则之 ...

  5. Python高效编程技巧

    如何在列表,字典,集合中根据条件筛选数据 1.过滤掉列表[-1,-2,-3,4,5,6]中的负数和0 方法1,for循环 data = [-1, -2, -3, 4, 5, 6] res = [] f ...

  6. python 37条编程技巧-汇总(转载+整理)

    1.原地交换两个数字 x, y =10, 20 print x, y y, x = x, y print x, y 10 20 20 10 2.链状比较操作符 n = 10 print 1 < ...

  7. Python高效编程的19个技巧

    初识Python语言,觉得python满足了我上学时候对编程语言的所有要求.python语言的高效编程技巧让我们这些大学曾经苦逼学了四年c或者c++的人,兴奋的不行不行的,终于解脱了.高级语言,如果做 ...

  8. Python初学者的一些编程技巧

    #####################喜欢就多多关注哦######################### Python初学者的一些编程技巧   交换变量  ? 1 2 3 4 5 6 7 8 9 ...

  9. 给Python初学者的一些编程技巧

    展开这篇文章主要介绍了给Python初学者的一些编程技巧,皆是基于基础的一些编程习惯建议,需要的朋友可以参考下交换变量 x = 6y = 5 x, y = y, x print x>>&g ...

随机推荐

  1. hdu 1874 畅通工程续(SPFA模板)

    畅通工程续 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  2. RocketMQ 单机部署(单master模式)

    一.为了快速了解rockmq,先搭建一个简单的单机版的rocketmq,前期准备:1.CentOS 7.6 64位(阿里云)(4G内存) 2.jdk1.8 3.maven 3.5.4 4.直接从官网上 ...

  3. jenkins#构建并部署springboot的jar包

    0. 前提是有一个可以用的没有问题的Jenkins环境,这是基础 1. 安装publish over ssh 插件,(如果网速太慢,请去github 克隆代码,然后自己构建,然后上传安装此插件) 2. ...

  4. 赶在EW2020之前,FreeRTOS发布V10.3.0,将推出首个LTS版本

    点击下载:FreeRTOSv10.3.0.exe 说明: 1.新版更新: (1)对于IAR For RISC-V进行支持,并且加强了对RISC-V内核芯片支持,做了多处修正. (2)对阿里平头哥CH2 ...

  5. 课程报名 | 基于模型训练平台快速打造 AI 能力

    我们常说的 AI 通用能力往往不针对具体的行业应用,而是主要解决日常或者泛化的问题,很多技术企业给出的方案是通用式的,比如通用文字识别,无论识别身份证.驾驶证.行驶证等,任何一张图片训练后的模型都会尽 ...

  6. STL语句表跳转指令学习

    打开语句表程序状态监控 发现 被跳过的指令用普通字体显示 被执行的指令用加粗的字体表示 录制成视频 如果除数是0 发生了溢出 用 JUO 跳转指令,跳转到 M001 例程已经录制成视频 上传到百度网盘 ...

  7. HihoCoder第十四周:无间道之并查集

    #1066 : 无间道之并查集 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 这天天气晴朗.阳光明媚.鸟语花香,空气中弥漫着春天的气息--额,说远了,总之,小Hi和小H ...

  8. 获取指定进程号,并kill掉

    直接上案例: 例子:获取nginx进程 方法:$ps -aux |grep nginx |grep -v grep |awk '{print $2}'  或者 $ps -ef |grep nginx ...

  9. Redis 详解 (四) redis的底层数据结构

    目录 1.演示数据类型的实现 2.简单动态字符串 3.链表 4.字典 5.跳跃表 6.整数集合 7.压缩列表 8.总结 上一篇博客我们介绍了 redis的五大数据类型详细用法,但是在 Redis 中, ...

  10. 第二阶段scrum-7

    1.整个团队的任务量: 2.任务看板: 会议照片: 产品状态: 部署云服务器完成,链接数据库完成,消息收发正在制作.