Choose the best route

Problem Description

One day , Kiki wants to visit one of her friends. As she is liable to carsickness , she wants to arrive at her friend’s home as soon as possible . Now give you a map of the city’s traffic route, and the stations which are near Kiki’s home so that she can take. You may suppose Kiki can change the bus at any station. Please find out the least time Kiki needs to spend. To make it easy, if the city have n bus stations ,the stations will been expressed as an integer 1,2,3…n.

Input

There are several test cases.
Each case begins with three integers n, m and s,(n<1000,m<20000,1=<s<=n) n stands for the number of bus stations in this city and m stands for the number of directed ways between bus stations .(Maybe there are several ways between two bus stations .) s stands for the bus station that near Kiki’s friend’s home.
Then follow m lines ,each line contains three integers p , q , t (0<t<=1000). means from station p to station q there is a way and it will costs t minutes .
Then a line with an integer w(0<w<n), means the number of stations Kiki can take at the beginning. Then follows w integers stands for these stations.
 

Output

The output contains one line for each data set : the least time Kiki needs to spend ,if it’s impossible to find such a route ,just output “-1”.
 
$Dijkstra$ 算法:以点为思考中心的最短路径算法。
图结构存储:邻接表
流程:1.初始化
 const int INF = 1e9;
bool hasFind[maxn];
for (int i = ;i<= n ;i++)
dist[i] = INF;
dist[sNode] = ;
memset(hasFind,,sizeof hasFind);
hasFind[sNode] = true;

具体流程为:

 for (int i =  ;i< n- ;i++){
int nId = - ;
for (int j = ;j< n ;j++){
if (!hasFind[j]){
if (nId == -)
nId = j;
else if (dist[j]<dist[nId])
nId = j;
}
}
hasFind[nId] = true;
for (int i = ;i< node[nId].size() ;i++){
int nextId = node[nId][i].nextId;
if (node[nId][i].dist + dist[nId]< dist[nextId]){
dist[nextId] = node[nId][i].dist + dist[nId];
que.push(nextId);
}
}
}

时间复杂度 节点个数 $N$,边个数 $M$ $O$($N\times N$)

举例 • 求所有节点到节点 1 的最短距离

1. 初始化
• 将源节点 1,放入已获取最短路径集合, 集合变为 {1}

• 未获取最短路径节点结合 {2,3,4,5}

• 根据节点 1 来更新所有节点距离源节点的距离 $dist$

2. 流程
(a) $step$ 1:

• 从未获取最短路径节点结合 {2,3,4,5} 中,选取距离源节点最 近的节点 3

• 将节点 3,放入已获取最短路径集合, 集合变为 {1,3}

• 根据节点 3 来更新所有节点距离源节点的距离 $dist$

(b) $step$ 2:

• 从未获取最短路径节点结合 {2,4,5} 中,选取距离源节点最 近的节点 2

• 将节点 2,放入已获取最短路径集合, 集合变为 {1,2,3}

• 根据节点 2 来更新所有节点距离源节点的距离 $dist$

(c) $step$ 3:

• 从未获取最短路径节点结合 {4,5} 中,选取距离源节点最近 的节点 4

• 将节点 4,放入已获取最短路径集合, 集合变为 {1,2,3,4}

• 根据节点 4 来更新所有节点距离源节点的距离 $dist$

(d) $step$ 4:

• 从未获取最短路径节点结合 {5} 中,选取距离源节点最近的 节点 5

• 将节点 5,放入已获取最短路径集合, 集合变为 {1,2,3,4,5}

• 根据节点 5 来更新所有节点距离源节点的距离 $dist$

(e) 终止条件,所有节点都放入到了已获取最短路径集合。

把所有部分合并在一起得到一段代码:

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#define Inf 0x3f3f3f3f using namespace std;
int map[][];
int vis[],dis[];
int n,m;//n个点,m条边
void Init ()
{
memset(map,Inf,sizeof(map));
for(int i=;i<=n;i++)
{
map[i][i]=;
}
}
void Getmap()
{
int u,v,w;
for(int t=;t<=m;t++)
{
scanf("%d%d%d",&u,&v,&w);
if(map[u][v]>w)
{
map[u][v]=w;
map[v][u]=w;
}
}
} void Dijkstra(int u)
{
memset(vis,,sizeof(vis));
for(int t=;t<=n;t++)
{
dis[t]=map[u][t];
}
vis[u]=;
for(int t=;t<n;t++)
{
int minn=Inf,temp;
for(int i=;i<=n;i++)
{
if(!vis[i]&&dis[i]<minn)
{
minn=dis[i];
temp=i;
}
}
vis[temp]=;
for(int i=;i<=n;i++)
{
if(map[temp][i]+dis[temp]<dis[i])
{
dis[i]=map[temp][i]+dis[temp];
}
}
}
} int main()
{ scanf("%d%d",&m,&n);
Init();
Getmap();
Dijkstra(n);
printf("%d\n",dis[]);
return ;
}

这道题的代码如下:

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string>
#include <cmath>
#include <cstdlib>
using namespace std; const int INF=0x3f3f3f3f;
const int N=;
int mp[N][N];
int dis[N];
int vis[N];
int m;
int n;
int dijstra()
{
memset(dis,0x3f,sizeof(dis));
memset(vis,,sizeof(vis));
dis[]=;
for(int i=;i<=n;i++)
{
int k=;
int mini=INF;
for(int j=;j<=n;j++)
{
if(!vis[j]&&mini>dis[j])
mini=dis[k=j];
}
vis[k]=;
if(k==m) return dis[m];
for(int j=;j<=n;j++)
{
if(vis[j]||mp[k][j]==INF) continue;
dis[j]=min(dis[j],dis[k]+mp[k][j]);
}
}
return dis[m];
}
int main()
{
int s; //已修好的路有几条
while(~scanf("%d%d%d",&n,&s,&m)) //终点是m,最远的点是n
{
memset(mp,INF,sizeof(mp));
while(s--)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
if(mp[a][b]>c)
mp[a][b]=c;
}
int d;
scanf("%d",&d);
while(d--)
{
int x;
scanf("%d",&x);
mp[][x]=;
}
int k=dijstra();
if(k==INF) printf("-1\n");
else printf("%d\n",dijstra());
}
return ;
}
 

最短路问题-- Dijkstra Choose the best route的更多相关文章

  1. hdu 2680 Choose the best route (dijkstra算法 最短路问题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2680 Choose the best route Time Limit: 2000/1000 MS ( ...

  2. hdu 2680 Choose the best route

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=2680 Choose the best route Description One day , Kiki ...

  3. HDU2680 Choose the best route 最短路 分类: ACM 2015-03-18 23:30 37人阅读 评论(0) 收藏

    Choose the best route Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  4. HDU2680 Choose the best route 2017-04-12 18:47 28人阅读 评论(0) 收藏

    Choose the best route Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Othe ...

  5. hdu-2680 Choose the best route(最短路)

    题目链接: Choose the best route Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K ( ...

  6. Choose the best route(最短路)dijk

    http://acm.hdu.edu.cn/showproblem.php?pid=2680 Choose the best route Time Limit: 2000/1000 MS (Java/ ...

  7. HDU 2680 Choose the best route(多起点单终点最短路问题)题解

    题意:小A要乘车到s车站,他有w个起始车站可选,问最短时间. 思路:用Floyd超时,Dijkstra遍历,但是也超时.仔细看看你会发现这道题目好像是多源点单终点问题,终点已经确定,那么我们可以直接转 ...

  8. Choose the best route HDU杭电2680【dijkstra算法 || SPFA】

    http://acm.hdu.edu.cn/showproblem.php?pid=2680 Problem Description One day , Kiki wants to visit one ...

  9. HDU 2680 Choose the best route 最短路问题

    题目描述:Kiki想去他的一个朋友家,他的朋友家包括所有的公交站点一共有n 个,一共有m条线路,线路都是单向的,然后Kiki可以在他附近的几个公交站乘车,求最短的路径长度是多少. 解题报告:这道题的特 ...

随机推荐

  1. docker安装centos7镜像

    拉取centos7镜像[root@localhost ~]# docker pull centos:71启动镜像centos7,如果不指定 /bin/bash,容器运行后会自动停止[root@loca ...

  2. 利用jQuery实现PC端href生效,移动端href失效

    今天要写一个功能,记录一下吧.if(navigator.userAgent.match(/(iPhone|iPod|Android|ios)/i)){ $('.item-a').attr('href' ...

  3. S7-200 smart输入输出接口试验

    工具 西门子 s7-200smart PLC 西门子s7-200 smart 试验 CPU型号是 SR30 这个 编译环境 符号 选择 了 "输入1"以后, 会自动的编地址为I0. ...

  4. POJ 2796:Feel Good 单调栈经典题

    Feel Good Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 11626   Accepted: 3212 Case T ...

  5. mjpg-streamer视频服务器移植

    相关软件下载地址:http://pan.baidu.com/s/16yo8Y JPEG库的移植 对于内核linux-2.6.35,不能再使用servfox,如果要使用的需要修改大量的代码.在此选用新的 ...

  6. 简单的js队列

    简单的js队列 /** * [Queue] * @param {[Int]} size [队列大小] */ function Queue(size) { var list = []; //向队列中添加 ...

  7. SpringMVC原理及流程解析

    前言 春节期间宅在家里闲来无事,对SpringMVC进行了比较深入的了解,将之前模糊不清的地方基本摸索清楚了,特此撰文总结记录一下. 正文 一.一个请求为什么会调用到SpringMVC框架里? 首先问 ...

  8. 如何让手游更省带宽,耗电量更少?TBR渲染架构解析!

    如何让手游更省带宽,耗电量更少?渲染或是其中一个可突破的点.本文中,腾讯游戏学院专家Hailong将从为大家解析TBR渲染架构的特点. 什么是TBR? 全称是Tile Based Rendering, ...

  9. Storm 流式计算框架

    1. 简介 是一个分布式, 高容错的 实时计算框架 Storm进程常驻内存, 永久运行 Storm数据不经过磁盘, 在内存中流转, 通过网络直接发送给下游 流式处理(streaming) 与 批处理( ...

  10. c++ opencv 动态内存

    1.CvMemStorage定义动态内存存储器   内存存储器是一个用来存储诸如序列.轮廓.图形和子划分等动态增长数据结构的底层结构 2.示例 CvMemStorage *mems = cvCreat ...