caffe学习笔记(1)安装 - Ubuntu 15.04
备注:使用系统 - Ubuntu 15.04 64位操作系统(若系统位于虚拟机上,在安装CUDA后,Ubuntu将无法进入图形界面)
/**************************************************/
//准备工作:CUDA,OpenBLAS/ATLAS,Boost, protobuf,OpenCV, Python
/**************************************************/
方法一:
Ubuntu系统上安装caffe官方手册(第一次安装时竟没看到这个神器。。。)
0. 基本依赖项
$sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
$sudo apt-get install --no-install-recommends libboost-all-dev
1. CUDA(使用方法二安装)
2. BLAS
若选择使用ATLAS:$sudo apt-get install libatlas-base-dev(安装较方便)
若选择使用OpenBLAS 则参考方法二安装;
3. Python(可选)
若需要使用Python,则$sudo apt-get install python-dev 安装pycaffe接口的Python头文件;
+方法二中的Python安装;
4. 剩余依赖项 (14.04及以上)
$sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
方法二:(因为系统空间问题失败。。。)
0. CUDA - 是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题
0.1 选择操作系统和安装类型
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAtQAAAFQCAIAAAAQhn70AAAgAElEQVR4nO2dTYgs233Ya2eyCwbtrJBddp7FQ+BNtoYxZBriERjBCINnMVoEEhgKEoEnExJ3BgkCunczgxaDLDBaJEy5yZVGijPEKFhO4upuNBPbAnUyRl3IzYs9tGSpdd+772RRX+dUnVMf3dXnVPf9/fjDu1NdH+ec+vj/+pxT/TwBAAAAYBHvk08+8e89giAIgiCIbce7d++EEN67d+/8e+9nH/3tH/7FP7/4o7/vvFgEQRAEQexZfOP7v/2zj/7Wv/fevn0rhPA+/vjjeKnzkhEEQRAEsa8Rm8ZqtcrlY/jH/9B5sQiCIAiC2NeIR1cU+SAIgiAIgth2IB8EQRAEQVgN5IMgCIIgCKuBfBAEQRAEYTWQD4IgCIIgrAbyQRAEQRCE1UA+CIIgCIKwGsgH0T6+8ytf+8F/mHz4p3/18qezxVffTH7li86LRBAEQexOIB9Eq/h71//3ez95J4QQH3/8Nz97+ze/iP/9i+99989+2XXZCIIgiN2IDeRjFir/c7rlsOEm89k2ajKc6/+feeGD2yYutJIQQkRP4+TT20Uk/9kqbhdRYW/bj1/+g8WP3qm1SIshxCeL//ODf+SyqQmCIIgdiXXlYxYKIZaLQfLnOFjKf1ZutYl8NMjWg6eVEKvg1mIjPizNllOq8sOykLkb2UPpEMN5Q+HrLr40C3+RK9Rf/+AvPvOV733mDz/863zZJ3/+J9+1Vx6CIAhiR2M9+Rg8rdbqVEA+7hVRW18+Gtpel/H5v3yr71ySefvyr5j/QRAEQVTHtuTjYakZZdDJhzRcUjAGecBiFdzKPfxVX/pL8jEO8rIoRx/OhVgugrm6z7zkq3Be2JVUpCzxSzXV2YBBPuJjleRDGTwyH0JeLdvc0JKzUIjoaZGXfD5LyjBfhspOZmFpn1L85Xcl95j+8XeS5cpJEUJ88j//i+trmiAIguh5rDnskqQcgwE8LPP8p+TXYiaO03+cYlVpUNYcPi3Dp1lpb/ooyMfgaZVncXXzOFsnCnU7HhSPGydjpUjptmrHQ1fDLg9LqUnVDet6PuRaa1oy3e3gVip/tk4iN8qfxep89cc/khTDLB9W56AQBEEQOxkbTDhVexQK8z/0hqEm1NtFpCS5PLsbh042HXZRcrZm2oSad0sZXVpZFqxa+TCl58rqKMWrkY+C4siepB3qqt+8uIlJMpAPgiAIom109Kqt/PVak26Vj9Rv80XmM69iNuU68qFKkqiSD02vSfqn9m2axAbazfmoqk7pKC3kwzC81ZF8/N5f/Xkz+fhh+CfuL2uCIAiiz9HV73xIs0Aq0m31UEIeHcqHuqsmPR8V8lExzNSBfFSVvFo+is2yBfnw/8cf/G1uGB+9/egH4f/y/Hvvq9EPfv7uo/yTt/ff2M6VShAEQexNdCofceKseBFDM+yiNYnuhl0Khdlw2MUwmtORfBTK069hF//+H/z3n2SSoVY27+v66P9F/7jza5QgCILYs1hPPoZzoXkNRJ2AKc/NTHNV0UuU/dwuIsN0y+GTaXxBE7X9B1XyUTfhVJkea5y8YtphzadKyQtTeouHaDnhtAv58PzvDucfx5Lxg/GffeYr30vjR9+Pl75b/UebbzgTBEEQOxprycd4cFuanVDIVerbocGDkqflr87qW6OLoTr/tLz/eHxnzVdtl8uwuufDlycxLIPirtS3f59mai9Fw1dt1VDfNJFaYxlqOkKyQ2i6lypete1IPu69L05+f/GRNMgi8Yu/+/2vf8dYTYIgCILIgv+3S0UU33Ah/HvP/6+/8Ucf/u+f5vM8Pnr79oez59/4184LRhAEQexIIB/FeFhUDlgQaXzxv/3qV773q/+O3g6CIAiiZSAfShReHMU8CIIgCKLzQD4IgiAIgrAayAdBEARBEFYD+SAIgiAIwmogHwRBEARBWA3kgyAIgiAIq4F8EARBEARhNZAPgiAIgiCsBvJBEARBEITVQD4IgiAIgrAayAdBEARBEFYD+SAIgiAIwmoo8qH9X6UDAAAAdAXyAQAAAFZBPgAAAMAqyAcAAABYBfkAAAAAqyAfAAAAYBXkAwAAAKyCfAAAAIBVkA8AAACwCvIBAAAAVkE+AAAAwCrIBwAAAFgF+QAAAACrIB8AAABgFeQDAAAArIJ8AAAAgFWQDwAAALAK8gEAAABW2VA+gvMPUo5fTeXF50Hy7+mr4/wPwz4qP++M6atjuZC7gLW22ZRttO12Ky9dlzt4YThjnZMSPyXsXsjTV8fZo6nJkff9GmhVv3UaI27wHrZhcJ6VqpCXtIXt9kLY98tqIzaRj+Bcuq+Dc+nKa/WE2maOUfa9gxdC27ZR199qhdWdtzxUo9WxUhst0PIYTVbf6NLogumr4/xhNH113MA/ensN6Gld3M7lo7DOTnxNQj56xfryUerRkNoZ+egI5GPd4rWhtxcG8rEW0nfdbEFdoXt7DehBPtYB+egVG8lHqVmnU418FAWgOEwjfR6c6ztJNVvFBTg+ruhazceE4g+nr46Pz8+PdRsUVzXv6/j8PKu3UoJ4obakhv0H5x8UN9cc9vz8vLSK3qnUg+hbukUpDENq6THVj0xtK+3kA6nZzJXOPzw/r7lwlKXFOhUWak5V3ojmC6PqulA6/qS/tCU1WbCmXKZjy3Ut7EzdQ4smrKif4fYq3tp1Z7d0hPp7Oa2EenipVnVJrpQITQ2uOSdKp0nhr3Kt9X29DQ5nvOtMV0++9nmgWafuuSM/tgoNoyme8mxvcJLLR9ddWGuf5KohNEU0tX8YvhRXyUf7h4GpmG1yTn1VmqSMHWJ9+Sh9vVA/08qHtE1+7tPPjZNDpKe8vI78YDBtWxIf7QbqqKCmVuoKyk7S5DsNptPCPAJdteX9y9nL0Jry0Qxjl8pdVNHzIde+QSkKh3hVatzS11td26Y2WjxoxZ2vJCn5XJcbVt1L8CrzILlCeeZWTlVBPrRXWM11oT2Q4WKtSE7FckmoW02V1tbcBtNpMJ22a0LzV1ZDoyjP70Znt5TJqu/lpBmKF5SyWfVjt/ww0Dd4sQT586j8kMrR3xhV59dwPRhubNPa2R2VNk/h7qu9fo2qX31jNbyFi9P8NJVb8yTr73K5CorxlB5g7eVjnYdBxcPIcLmVd1dblSYpY4ewKh/651y81Ly7wlk9190hpkvJPOxiuCS1OzJtWFzXUFLT/s39Q/ryGxqyoXy0K0X5AV6kIsPUnwzTnW+or7lh6x4CFUtrr6Qm10XxFJsu1qpvxuYniEkMqvbQrgkr5aO2UQxlNV8aje7lqsNXFiFfu7rno+Ze1iWDip2Xy9TgcMa7rv7qqdyvcW8Nbov8D+NVab6F5SIaGmPNk1yXZLPtgvMPzl/Jf5SuraY9H+s8DPTFbJdz6qrSJGXsEN0Ou6Q0ubXklY+Pj4+Pjw3XmNrG3cvHVO7O1nZnNc0cwbm6o7xHR7t/q/JhTAjGUsi10RStmXwUKl8jHxXPH03DFnZfmR3XkI/66yLLRKY00a18qK1g2EPrJtxEPhqdXfP1uSX5KK/QTj7SPFJhyNWtuLZ8NLp6yvs1nNvafNlMPprdwg3cc+2TrLnLZZJV4/8ke5m+OtYUZ335aPAw0Bazkd2V7i5TVZCPhNJXAGlB256PeLFBcRt9W9pAPupPYpMHVtNCmJavLx9ys3XW86GgrVcj+TDtvOK5Xv+1XU+6doOnbOXuDYWvOqqxYvVnrLl8NL0I2zbhBvLR7OyaFXiL8qHuzVS2SksI6i8684W+nnw0unoq99tynQa5seEtvL2eDwXtYuUmLJ27TuSjZaav7X2qfBobq4J8ZATSAJQIztXpT9oGU+7K89J5mOqHcwP9QGhn8mGyHmU30tVhzhwlIavcfzP5kKZ06kZP1YavkI+pfiDW6DevlAfBevKhtIfx3Kk7lU+10sNRbh55Kkq+hrxucG7Ovep1J/cQaC5XI0HhNyzMF2uzS8hQxEJhKvSlXRNWyoeuUdR83eTsFh8GtfdyeUlL+VAfJEorVD4Eil06ej/W3hgV59d0aZk21TRPjXw0eO4oTwm1oQzF0xSj6pQVeyo0j5o1T7L+Li9W9AOl4eTKmgzTcBmt+zAwPoxMJdFPIamsCvIhE+QdfqVekPJbBdkHH3zwwQfH56+CqRDly1abZQwz5OvkQzmXFRvkByjWpFjR4tsuxYNKLVKYNV/dVWuUj9pJ8co8djUXFi7evGzSofSlCILz83KJFZSdV91kaUGPC4+xVm+7aBp2Grw6Py4sK1X0PCif+2LFp69M703VXhcFBVe3KUlBs0uosHPlUZi3ZeUjvWkTlo6h7EU7T18+c43ObqGA9fdyeYlRPkqNrzlM6Ywa9lt67OsfKKYbw3x+DW+B6V5jMzSP5uFQvIGqzu0HxaeE0hralzGkxmh2CxeKqHvUrHeSzXe5hHIdFM6dvF+lzPoLf82HgaGY1TXU7auqKhXdmrs4+ZSfV29LTbqA94t+Xw4bfDnqd8W2TVffKiu+FPXhW+v7fZLBLchHS5p0xcN7Q6+f3qaRlqYb97dm26YzN0A+AAwgH00I9D2t8F4zlX+ZoDfIncObJJb3Ni8F5xu2nAzyAWAA+QAAAACrIB8AAABgFeQDAAAArIJ8AAAAgFWQDwAAALAK8gEAAABWQT4AAADAKsgHAAAAWAX5AAAAAKsgHwAAAGAV5AMAAACsgnwAAACAVZAPAAAAsAryAQAAAFZBPgAAAMAqyAcAAABYBfkAAAAAqyAfAAAAYBXkAwAAAKyCfAAAAIBVkA8AAACwCvIBAAAAVkE+AAAAwCrIBwAAAFgF+QAAAACrIB8AAABgFeQDAAAArIJ8AAAAgFWQDwAAALAK8gE28O+9fYq21fdOvX7G+3we29YdADrERz7AAs4zjdu85VwykI/NTyIAdIiPfIAFnGcat3nLuWQgH5ufRADoEB/5AAs4zzRu85ZzyUA+Nj+JANAhPvIBFnCeadzmLeeSgXxsfhIBoEN85AMs4DzTuM1bziUD+dj8JAJAh/jIB1jAeaZxm7ecSwbysflJBIAO8ZEPsIDzTOM2bzmXDORj85MIAB3iIx9gAeeZxm3eci4ZyMfmJxEAOsR3IR+jk6NDL46z60crh5SYXp0depejbvaTVuTgZtpB0fYX55nGbd5yLhnIx+YnEQA6xLctH5PrgzxVT6/ObPjH3WUntiFTKPno5OjwpO0RJtcHR6dXk07L1Veq0sA4WIrwIftzFopVcJv++bAUy8XAn4ViOWyUVJqv2Sv5eB1EL8GgycJey8fgaSXms/L5jZ7Gazb1wzI7uHSR3A/nQl0+DpZCOnThT+QDoGfYlo/Hm1Pv6OIu+3tyfbBG2m7JFuRjLdsogHxICSbLEw9LIfJcNXhatcxb+yQfu9fzMXhaCdkd/XvvdhGJdeXjYSnyszkLU/9QFWccLON1xsEyPbR8RSEfAD3EtnzcXapdHbJ8jC68o4uTS81AxuPNaTrAkYvL3eWhd3mRjeCcjJK9FdaUto0z/fTqLN355Prg6PQgGz2RBCXf6uxUo0dK/43E6MKTVr67zIohjTQlxZCWpMe9uyyPRk2vzg4PzuTqj5Qq7wjVaeB2ES0XAz/5RhvOs8whpRPkY0fkI1oqnR/DuYiWbQ1S2lbeMFWK4VzpBVFWaN5P1rbuANAhruVDjE6yLD668JR/p70C0r/lze8uDz215+Du5vREHtCRk3ouFgX5UP6dpHNpeWwh5TQv2YlcHfm4WdWUwjxORnejXH2y8kt9QvL68vhOPMsk2aTYh9RvajJBJhnxt9gseZT/MQ6Wqyjtic8zU9Y5P1/miSdbGJtNkpnkLFXIWCmdf2leUz7yhcNQRNFLsrfwTbzCMMw3GYYiHJ56w2ch8k1ENBnYl4+nWa6Mt4touRim3VeDp1W+q7yRs5YvimZRMlJJ1Q3utHedtnUHgA7pm3xkyTgf11DUQUrY1YMpjzeniqYY5SM7orRcLknNwFA27bTkBPlODFNcTUdPts1FJFsuV2q3Rm0afMcNH/LskvyZd57L8pE5RzY7RJomknXU3y6i1ELSXJX3owznIkt18bGUPPcwq/ne3Lb6XchH6hyvg0iEQ4N8eKfe8FlEk8FgEtWax7bkY5zJQdyq2djZ4HYsnfFMN9OWlzrAquXD08z5kNZp2PXVtu4A0CGu5aM07JJ+lc+lJB+MUIcbNPKhDLscbiYfSknqBjgkvUhrVHKmwrCL5uhqNUuDRPssH7Fn5DM8HpZxDpM8ozSunyUwJWmlayqj/rMw/cYcPY2T9R+W0dM4Wz/7Uq7vz++BfCRu4Z0Ogpcq+fBOB8FL1v/hRD5SHVSbPTGDjPK5MyipTj6kkGcoj4PlKpwb+0WQD4C+YFs+qiacNun5kCgtV0c3LPV8lA8d7+faoCwFTTH0fKjrvw/y4c/C5SKYy931yzD3jG7kw7tdRLnizMLlYlCamSh3iuyofAxD4Vo+EpnL/h09jRucO418aOd8VB006eJqIJFt6w4AHWJbPqpetW0w50OI0VWaiSvlQ9mz2t3SQD7q53yMTuTEr84zjf9U58Zm/9b0kcQoWja5vhqVSrXf8jEOlkJ6taHwZ6V8NB12uU+njGQDLqso7/MfZynQOJ+xd/IhouC155163ptQSMMu4RvP6bCLesq08pGdMmXYJSg0u+Ftl+FctkN59C1dudJpkA8A91iXDyGMPzLW6G2XQ69izoc0unFwVsjTxrddtH0P+REvLzR9GKPRlVKkwgqjkyPTmItS5WREqfy2S+4u7418FGcRqn9Wy0ezCafl3ea5TZpt2uS90LbVbyQf6ibRZFAnH7FzCCGEeImibMLp8zAffEn+7UI+dAvzYZdcAeUJp9G8ZAya3/mYDR+U8xU+JDuRDz2cK+cd+QDoF07kw4Ay06I/tP9JDys/XrJbNJCPXYq21a+XD0fxPp/HtnUHgA7xkQ89k2ncwbDGG61K/wQIIfYraa1xmziXDORj85MIAB3iIx8atC+nNCMeOqHbo4DzTOM2bzmXDORj85MIAB3i90g+YH9xnmnc5i3nkoF8bH4SAaBDfOQDLOA807jNW84lA/nY/CQCQIf4yAdYwHmmcZu3nEsG8rH5SQSADvGRD7CA80zjNm85lwzkY/OTCAAd4iMfYAHnmcZt3nIuGcjH5icRADrERz7AAs4zjdu85VwykI/NTyIAdIiPfIAFnGcat3nLuWQgH5ufRADoEB/5AAs4zzRu85ZzyUA+Nj+JANAhPvIBAAAANkE+AAAAwCrIBwAAAFgF+QAAAACrIB8AAABgFeQDAAAArIJ8AAAAgFWQD7CB8x+04Acw+MULAOgPyAfYwLlMIB/IBwD0B+QDbOBcJpAP5AMA+gPyATZwLhPIB/IBAP0B+QAbOJcJ5AP5AID+gHyADZzLBPKBfABAf0A+wAbOZQL5QD4AoD8gH2AD5zKBfCAfANAfkA+wgXOZQD6QDwDoD8iHVX76/f98dfmFTx0fekeH3vFnf+1fvvrG93/iulA2cC4TyAfyAQD9wZF8TK4Pjg4Pbqbtt5xenek3vLs89M6uHzcv27ZYTb/+Lz51dOgdHX76y/fPsx9+68uf844OvaPP/vrXw5Xrwm0b5zKBfCAfANAf3MjH482pd7SeKxjlQ+bu8tC7HK1Tssn1wdHp1WSdTav58egiNg8vta6kEY4OvaPPnozm3R+yT6yR/geTKNn4eah89DqIRDis38MwFFHwWl34JhQvwWAn5WM4F9HTWF04C8UquE3/vVwMkA8A2AmcyMf06uzQOztdK83vpnz8/Ntf+K3DVDV08Vu/9+2fd33QPtFaPiRLGD6LaDLIPho+i/BNI3eRt/JOPe90ELyUdGRH5ON2EZXcYvC0knQE+QCA3cGFfEyuD44OT0bTqzNFEe4uD73Li5M0H5+MRKIp8ZKkm2R6dXZ4cHlxkKx2cadsPhJKj0KqEZPrA2W3KaMLT1k+yo4e70oZyhld5DscXXhHFyeXpZWVokp889/8ktrtoZbz0Dv6J7/zze5auH+s0e2Rq8ObMO/8eB1EjbouhmG5d0Tez47Jx3AuwofCwlkolkP5T+QDAHYFB/LxeHMaS0P2j5i7S0kXhEg7SBLnuLu5uBoVF8r6Ivd2qD0fo5Ms5RcFInWR0ejk5vpRFHs+KuVD6YCR6lKUKqF6xqe/fP+jD1eiKB/rzYDZGSoz/SB4ScdWXgeREOEbRTLkrg473R7dy8c4WK6iZbJu2l0xC0W+MHeLh3RRJhP13R5F+Rhmw3jzGfIBAL3DvnxIuTnpAkk+KI6VqJ/KmyudB6kcGOVjdCEpTr65foJqC/nItak4GFT8VO8ZyEfBP8I3qlu8CeNtc414HaTTQETJLQrdHilZV0fS7dFUQdpWsF4+ZOeIeyxmYeYcmV7cLqK0PyPTi9wk8q6OZCeSguTyIXvJ4GlV6jJBPgDANdblQ+5vMHddCGGafrGefKgTLLJRkvK8kA3kQz2KWnJp2MUgHwy7DEORu8JgEmX/zuZ8SJM/dJNJpW6PdNvEaSTncCcf2czQ++E8/rc8bjIOlgWZSEPVkbgnI1tNKx9DdfZyaZoq8gEArrEtH/nEiDySLG6l50MtyZZ6PspIE06zYZfVh8/p27ZMOE17NSThyLtAkiEYxRsqxl/kj5Lxl3wQpx/yEXd4FORjFdzq5ONhmQ+dJB0k+d5M8lHf24F8AIBDLMuHNP0iRvrBj1JXhDrnYzTNFjaSj1wslIPe3cgykc/5uJPKkxnP481pJhzKlBT9wMpFtpOrUpdK9qptaaYIr9rmTpB5Q6HnI/732j0f+Vu7KbUTR9pWcCvDLouhtufjdlGsznwmq8zgaSVaTT5d/7wCAKyFVfmQc3lKPGBxcacfB1GGM7L3X2rlI329RfO2i5L+5REZeT9HqsfEW11eHJjlQxQ7dcp9LfmPjKnBj4wNghfZKvJBloT89ZZ8MkelPQyCl2S1taedtq1gg56PcJ6cZtlCwtQ6dRNOV2E6tpIuqZp2Go+2xPuRR14YdgGA3mF72OU9h59X35VoW8E2wy5pFN6VdRfbOOMAABUgH2CDrSiC9PJLTrMfMEU+kA8AcAjyATZw3pOBfCAfANAfkA+wgXOZcCwf/Y5tnHEAgAqQD7CBc5lAPpAPAOgPyAfYwLlMIB/IBwD0B+QDbOBcJpAP5AMA+gPyATZwLhPIB/IBAP0B+QAbOJcJ5AP5AID+gHyADZzLBPKBfABAf0A+AAAAwCrIBwAAAFgF+QAAAACrIB8AAABgFeQDAAAArIJ8AAAAgFWQDwAAALAK8gEAAABWQT7ABs5/R2vbv7vlvMA0DnXZ+2ruRy0sN0Jv8ZEPsIDzO3bbd7jzAtM41GXvq7kftbDcCL3FRz7AAs7v2G3f4c4LTONQl72v5n7UwnIj9BYf+QALOL9jt32HOy8wjUNd9r6a+1ELy43QW3zkAyzg/I7d9h3uvMA0DnXZ+2ruRy0sN0Jv8ZEPsIDzO3bbd7jzAtM41GXvq7kftbDcCL3FRz7AAs7v2G3f4c4LTONQl72v5n7UwnIj9BYf+QALOL9jt32HOy8wjUNd9r6a+1ELy43QW3zkAyzg/I7d9h3uvMA0DnXZ+2ruRy0sN0Jv8W3Lx+jCOzqU4vRqkn92cnR4cDPdZO/5HibXB8rOWzK5Pjg6PBltUBaQcH7HbvsOd15gGoe67H0196MWlhuht/gu5CN3gsebU6+FIoxOmgtBa/los3NoifM7dtt3uPMC0zjUZe+ruR+1sNwIvcV3Kx8tezuQj12l7o4azgsbLIe1N+HDUsxnfbnDG+xTqmOD2jWLwdMq22n0NPb8e88fB8tVcKtvKN367Ru/88a5XUTKBln5i3UZPK2SYhc3SaoznIvwwfGJlhpZPRFrheGymYVCu9xJNZVrqdz+8ppys2j34OzCWy4Gm52puhgHS92x2pahbSP0Ft+1fEyvzg69yzjny+l/enWWj86cjNQlZ9ePItGLk8tTaaG0h8KnlyNdATL10e88K+fdpfpptvDs9EAzfgRFGjxh2+UMf8fkYzgXeWkflt34x8NSfloN5/Ez3Swf+vV7kLBvF1HxcRy3T6V86J7UzusyeFrljXy7iFr7h1Jlw2UzDpZSNW8XUe2N0Pkpa3Mt5WetwR4s1mIWymfnYVl9aW0W42CZC5Z0kRjK0GEj9Ba/n/Jxdyml+cn0alS2k2RaRm4VhRXkT+UJHHr50O48We3x5tQ7urgrljY2kni5WmAoUXdz7rt8qI+Y9epbCv0z3SwfhvXdJ+zS4z6rws7Jh6oF5jav3ENWZdNlMwvbymvXp6zVtaRduX3LdF0Lk2RsQz5yn1bP8hrHatsIvcXfAfmQNjb5gWYFZcbo9OoslYzW8qEIhyQi4u6y0KGSLIcydXeUPmfkHZLqd0EhhBDhPJePbKE89BAt823lkQUXHbzFbJE9eYdzES3TzufMpcoVv11Ey1Vxofrdsfhcy5YYej5qGt9e4+xTz0ep8f37we04vQYS0hLOQpFdpclC9Uo2XTZFxXFwytpcS016PlzUouh26mkqjQ2lpdU9TAqnMh9hSVqjdLlKHtmyb6xtI/QWv5/yEf9bHXYR7eUj+1Q6ylrykc9KkSQD+WhO3R1VmHZQ+no3C+NbV3pgZT3Sg6dVmrazh7LcyTkePswG+e09Dpb2x8ir5EMqfPwY0lVc7sCXGmEbcz7qs1rXZ79yzkdxZ/o5H9JV0Tf5KC3PrsBZKCcnjW8ZL5udnvOhjD6UFjq78OTBsuzfcvdqMiYy1j1MCqdS9svl0K+QD+Z89GPCqX7Kp9QLQs/HrlJ3R2meWcWEtBwWvkKlzwVl2/QBoUnA6q7sPuaq5CMr/OBpFT7oK64+vFIjUUIWL6N86NZ3nrCV2g3nch7ah56P9AKQKVtmlsYayod6fmuTVuenrM211GCEpRrbsNQAABHFSURBVFlfzjZrkX+HkS6t4lTZrAcxJ5OP8qm8rxheMVpa59N3eovfp1dt8/T/eHOhTPaU5CPvhGggH5o5H5PrgyNZRBT50O68as4H8tGMujtfLx+lR+q68mF6NFh7zBnnfBTkI3oa69NqvXxkDVJ6jpsmx2gbsEl0ffaV2imj47soH8U5H2I+M8zSaCIfTaYKmYxnm6eszbXUaHpHkylc262FppdCV3LtWWsgH9o5H1WXREeN0Fv8vv3I2MlIFMZc5KT+eHNqeiFF3YP5bRe5DGcXJ9KQSsXOjW+7IB/NqLvzdc8sqSdTfkI1HXYxyEfxKWDpMWd628Uw7FKtYol8JD0l+eMs3Up5mybfm2l91wm7aBJS58fOyYfpbRflZQfNZamXD9Nlo9qni56PVteSacKp/uq1Vgv1LSFtz4fuxTTtw6ROPkxvu5jK0GEj9Bafn1cHC9Q9y+omnAolWwshGkw4NQy7rCIHPR9KIeXH2XAuwnlaNs2EU2EedhkPH2bylAj5+S53F6cNa1y/F7/zUfrlA+0QUpPf+XBcF+PvfMgjLxXDLsnmurOTrvwwGzoeRmx3Lel+56Pq6rVTi8HDbCgXLL8C45lGmh8jKQ27ZA+TWvnIdqscy1yG7hqht/jIB1igwSO7X2Grgp28c7uvjUNdqOYe1sJyI/QWH/kACzi/Y7d9h697IOSDulDN96sWlhuht/jIB1jA+R277Tt83QMhH9SFar5ftbDcCL3FRz7AAs7v2G3f4c4LTONQl72v5n7UwnIj9BYf+QALOL9jt32HOy8wjUNd9r6a+1ELy43QW3zkAyzg/I7d9h3uvMA0DnXZ+2ruRy0sN0Jv8ZEPsIDzO3bbd7jzAtM41GXvq7kftbDcCL3FRz7AAs7v2G3f4c4LTONQl72v5n7UwnIj9BYf+QALOL9jt32HOy8wjUNd9r6a+1ELy43QW3zkAyzg/I7d9h3uvMA0DnXZ+2ruRy0sN0Jv8ZEPAAAAsAnyAQAAAFZBPgAAAMAqyAcAAABYBfkAAAAAqyAfAAAAYBXkAwAAAKyCfIANvFNv58J1mwEA7C3IB9jAuUkgHwAA/QH5ABs4NwnkAwCgPyAfYAPnJoF8AAD0B+QDbODcJJAPAID+gHyADZybBPIBANAfkA+wgXOTQD4AAPoD8gE2cG4SyAcAQH9APsAGzk0C+QAA6A/IB9jAuUkgHwAA/QH5ABvUZPrXQfQSDKQlw2cRvvG8U28wiaLJAPkAANgnkA+wgSv52GRz120GALC3IB9gA+QDAAAykA+wwUby8RIle0nXGT5HwevimsNnka/5PPROPe9NKG84mETxmg2lxEEzAQC8HyAfYINN5ENyjswz9PKROMfpIHjRdJwgHwAAPQH5ABt0M+zyJoz/bZIP2S2QDwCA3oJ8gA3q5UOEwwbyEfdtIB8AADsN8gE2qJEPZdAknquRuIhh2EWk6jAMRQv5kMdlkA8AAFcgH2CDWvmIhSAl7wXRTjiNnUMIIUQUvVTJh/c6iPIN80NEL/R8AAA4A/kAGzSQj96F6zYDANhbkA+wgXOTQD4AAPoD8gE2cG4SyAcAQH9APsAGzk0C+QAA6A/IB9jAuUkgHwAA/QH5ABs4NwnkAwCgPyAfYAPnJoF8AAD0B+QDbODcJJAPAID+gHyADZybBPIBANAfkA+wgXOTQD4AAPoD8gE2cG4SyAcAQH9APgAAAMAqyAcAAABYBfkAAAAAqyAfAAAAYBXkAwAAAKyCfAAAAIBVkA8AAACwCvIBNnD+ox2b/4yHf+/1MLZxsgAAtg3yATZwrhrIBwBAf0A+wAbOVQP5AADoD8gH2MC5aiAfAAD9AfkAGzhXDeQDAKA/IB9gA+eqgXwAAPQH5ANs4Fw1kA8AgP6AfIANnKsG8gEA0B+sysfd5aF3dHo1qVqyFqOTo8ODm+mGe4Ht4Vw1kA8AgP5gt+djcn2gWML06uzQuxxt96DQA5yrBvIBANAf7MpHbBtn14/xX5Prg6PDE9zjPaCJDQwmkRDhUPkzIwpeF9YfhoaPhs8imgwcycfgaSXEclhYfruIygv9e8+fpZVYBbfKR8O5iJ7GyAcA7CeW5UM83px6Rxd3pX/HIuIdHXqyjowuvKOLk8tkedxH8nhz6h0pS+JhF3WreIV8QOfx5tQ7O9UcAqxQqwLDZxFNglCVj/CNaf1B8CKST18HkbSV9zqIXoKBm56P4VxET4uw5BnDuQgfyuuPg2W6vGAnt4touRjQ8wEA+4pt+ZB6O+QxF2nSxugil4bRhVeYzCF/KqaPN6O7dPPEJ6TelJLoJBsq0gNWqO/2eD3wToeN5UNecxC85J0fw2dh3mrb8jG4HXv+rCgfRpOQ1xwHy7zzwyAryAcA7AvW5SNzDnnMZXQh2cD06kwWEdUSFPnIl57ohKMoIspwz+azXKEFzeZhFOUjeklGXkrDKAb5aNztsbVhl7J8mE3CIB/Nuz2QDwDYUezLR+IHV7Il5AMl6nhKWT6SF2SMwy6KZJiWIx/WWUM+0u6QeHlhYodePpJuj2YK0rYK68lHahI6BdHLR7JmQwXZxskCANg2DuQjn96Rveeik4yq5fmnsUPQ89F31pOPLEqDKTr5yJyjR/KROUdT+cicA/kAgD3GhXzEIy/KrE/lhzrublJLKMvH5PokmwKik4+qOR/IhzssyMdgEiWjM/2Rj/zfDeVj8LRKXnJBPgBgj3EiH7opn9LbLt6Rcc6HMuaS60vDt12QD2e0l49B8JJN9SgPu5TfdhkEL4Vj6j3Gpnw8LAv7UN+eLb/tMg6KW2hf0EU+AGDHcSMf8L6xVs9H7hNpt4dsIcbf+ehRz0ceec+H8lat8Xc+6PkAgH0G+QAbNJMPq9G2Ck3lw25s42QBAGwb5ANs4Fw1kA8AgP6AfIANnKsG8gEA0B+QD7CBc9VAPgAA+gPyATZwrhrIBwBAf0A+wAbOVQP5AADoD8gH2MC5aiAfAAD9AfkAGzhXDeQDAKA/IB9gA+eqgXwAAPQH5ANs4Fw1kA8AgP6AfAAAAIBVkA8AAACwCvIBAAAAVkE+AAAAwCrIBwAAAFgF+QAAAACrIB8AAABgFeQDAAAArIJ8gA2c/xhXb4OW7KRZRC9/yK5XsUaTAmwPH/kACzhPZr0NWrKTZhHIB/IBO4WPfIAFnCez3gYt2UmzCOQD+YCdwkc+wALOk1lvg5bspFkE8oF8wE7hIx9gAefJrLdBS3bSLAL5QD5gp/CRD7CA82TW26AlO2kWgXwgH7BT+MgHWMB5Mutt0JKdNItAPpAP2Cl85AMs4DyZ9TZoyU6aRSAfyAfsFD7y0Qt+8v3Rze/+2ucG3tGhdzT41D/zf/c/ff+nrgvVIc6TWW+DluykWQTygXzATuHblo/RhXd0ejXZ1u7vLg+9y1Hyx+T6YKNjTa/ODr2jQnRf+FX4tV//3KF3dOh9/kvfmv3w+dtf+vTRoXd0+Knzr01/3vGxXOE8mZnidhGJ5XALex48raKncfdZ1lbLDJ5WYj7bwp7HwXIV3HbdLMKafLwOIhEOXZuEHMNnEb5BPmDH8HdHPkYnR4cno5qVOpWPlMn1QYNDr8l8dPK51GzOrh/Tw8VLPnU5+vF2DmuZbabJ4VwIsQpu772HZZIvH5aNEr9/P5yL8OHe8++920W0ea6VdjK4XYRiC1m2qzR/u4iWi4Fx21mYOtngaZU00SaRn5Hx4Gkpqg69VrOINvIxmETRZGD4dBC8RMHrTTP9tuJNKJ6HhQIP3jTyoTWaFGB7+MhHPVuUj9W3//1vljpX5PjNL3xntY0DW2bD1FWd78uZrKl8SOm5a/nY1lf8FuXZQD6kT7uWj1rvWatZhCX5qFGTxsbQoXx43ukwRD5g1/Bdysfowjs6PUiHNg5uptlad5d5Aj64mSojIHH3gBid6IZCKuVD2km2Tuw0lxfpri7uymVW5GN6dZaVIfno4GYaH+vk8rS0/7iapiGbb/7OPy3US+n58I4Of+nffrNdC/eSDVNXdb5HPmpr17DddJ8iH8gHQPf4ruUjTerS8seb01wCJtO70Sizjaz74fHm4uAm+ePuMs/cFfIhrTY6yV1ndCInfi2Fng9tUWNjiA8try/9W6mXtOfEMz7/pW89f7gSRfmoKduO0CBNRst41VVwqyS8bPLE4GkVLdNuoCR7zUKRb2UYdsnWEaUkapKPcbAsb6IeS1onX60P8nG7iJImWoZy7ZTCxwawKi6slY98P9JEmYe0IeJN8nWk1XogH4PgJV4xCp8z+cgWCmlJFBUX6uTjdRC9RGlVcyMZTNJlL8EgXi35Oxy+CZOFsUaU/p1vmxrGYBJFL1FemFw+hmG+GvIBu4dz+ciSce4WmiStrqDbZ7K+WT4K7nIqi0jNkEpx2CVzl+nVmU44xPTqLJEb6UC6Y2k94/2UD5HNCRg+jE3ykc0VGM7T9eVMppEP2QDGwbIwt1QvH/nO/VkoqUZuGMvFwB8P8oQ9C7O861g+1HImhc8ncChFzZwja7ca+ZiF8ib5fvLZIdHT2Lsd52KRnQjn8jGYRGmqHgQviVXIEziGz7FA5J/qkroqH5lzZCYh90y8CZP95AvzzYfPIlOWpBiSjgyfkzIMJlG2cPBmOEh2NQyF3AGDfMDu0Uf5KLxmIndRFAxAmhvRSD48zSZryEfaiSLvXzlWLiWPN6fqQZXRJWXYxSAf78WwSzFPG3s+sgSWJbMa+ci7PYQQpa/4WvlQCpOURJcvB0/SbJy+yIfsGWkBlK4IkfRGKDVKjaRaPpRNEpPTvdSj9An1RT5kz0iHXfJuj5jwjVcYWEmNxNTzkXZdnA7DQtdFTOwckpEkh463TewkUQdlMOh1ED0PvfII0ZtQPAfBi1AHX5AP2D36KR85Ui+IsoI81LJGz4dcoDXkIz7ildyr0ajno4w04TQbdvn5hz9K37Z9XyacblU+Kt6k3UA+tMm7t/JRTvaF8hdaaQP50J+mvspHeQJHQT4K77bUy4dmNoncHfI6iJ6H6WrD8CVIOzMay4eIgteFgiEfsHv0Uj5GF8r4iCQfWbdBcZ5HvXwUfOW6TkokNG+7JH0zeTdGgzkfQkyvbkpHyl61lR0l7fx4X1611ciHyFVArCEf5c3r5aM8pmMYdgkeSsfN5ENJz/0ZdinNd2kz7FJqDdOwy6KgI3lLyofo1bBL+c3VFsMuJfnw3oSi7AHKLNF4Tkk24BJFL6lGGIZdSj0f5XkeyAfsHj2Uj8JPe+X2kAxhlN52OTiTJ6jGaTvZKnlrJtERdc/rz/nICiO9vdLobZdDT3es/EfG1HiPfmSsnKfzrvto2b7nIxltiZOiPPJStIH8dz6SIxYnk2onnEbzxUAedlmu0jLIO5m5+Z2PmgmnQhp2MU84lftC4m2Lk0m1E05X4dNYe+6UM/Lg5nc+aiacCmnYxTzhVOpy0MpHYeRFnhya+oGkQUVZ0U841ctHvHI4PG36u2drNCnA9rAuH/uC0o8iNv5NEX5e3VFs7RdOpe4Tu/LRUWztF06342Ti/f2F00Hwwi+cwu7hIx9roX1vZYs/G7/r2EqZuxe0ZCfNIvh/uyAfsFP4yEdr4pGdwjRS5KMS58mst0FLdtIsAvlAPmCn8JEPsIDzZNbboCU7aRaBfCAfsFP4yAdYwHky623Qkp00i0A+kA/YKXzkAyzgPJn1NmjJTppFIB/IB+wUPvIBFnCezHobtGQnzSKQD+QDdgof+QALOE9mvQ1aspNmEcgH8gE7hY98gAWcJ7PeBi3ZSbMI5AP5gJ3CRz7AAs6TWW+DluykWQTygXzATuEjH2AB58mst0FLdtIsAvlAPmCn8JEPAAAAsAnyAQAAAFZBPgAAAMAqyAcAAABYBfkAAAAAqyAfAAAAYBXkAwAAAKyCfAAAAIBVkA8AAACwCvIBAAAAVkE+AAAAwCrIBwAAAFgF+QAAAACrIB8AAABgFeQDAAAArIJ8AAAAgFWQDwAAALAK8gEAAABWKcoHQRAEQRDEtiORj3fv3q1Wq78DAAAA2Car1ert27eJfLx9+3YFAAAAsE3evn378ccfCyH+P6rkkkxkcirfAAAAAElFTkSuQmCC" alt="" width="502" height="232" />
0.2 deb(network)方式的安装
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAmEAAADtCAIAAAB4ejWWAAAdoElEQVR4nO2dPW7rQHeG7xKyhOzBC3GjBWQJKYjbpvQCtAG3KZnuFoGBLMCGEBhI5c4u3HyAisBACqaQLJ6Zec/8UJQoXj8PTmFLw5kzw5nzzgxJ8dfvP78wDMMwDEvt1+8/v/73//7xH//zr//2n/+0uDcYhmEYdjv26/efX//+3/+yuB8YhmEYdmv26/efXw//9c+L+4FhGIZht2bLe4BhGIZht2nLe4BhGIZht2nLe4BhGIZht2nLe4BhGIZht2nLe4BhGIZht2nLe4BhGIZht2nLe4BhGIZht2nLe4BhGIZht2mNB7z0+yHi+ekajj68D8Owf5g3w/3nffT5U1K9A+9vy56n+9evYfjqH69Q1ku/ty0T/XuePX5+DMMwDB+vL+dl9fbsnZRDEZc/X+qMBF5d8ZRV2cN70vLfp2PEO9E2pWrb+9evSaf17Tlb9CHb1gjz8D44LX8obs4wgv391nhAHDGnjo1mu5JGnuzx8+Mq9TLmx/05Am51A15QI+c7ibm2uo4toJHT++Q4tU00ssLDoFzZ8m/PGX3Nn8TjUbKbTTrLfitNU1zsp1vjAaIrz65e0tDI9WvkjFmhkS32tB+G/UN6eJ1GRhVJO9JE7Xna26PS5prWgH4/nybk2I+3xgNEmIu7stmu/B6Qh2nsqeO+9HsT4A7bOPvP+6Nu7Z9PGZiCvJGZ7vfaz6NDDttNh5z7Ro10s338/BiG59dxM+rj9cVuIn2876OsRjfGdjObTiouhI389vydrbM4GDm0jCkxXBCIHMoa6bT82/MwfLx+jtmGGqZ8sFv3xSa1DZLRyOCr+h41/ntswO+vDv056SqVGvn8/pVUMNfC969fw7B/Htvq+6jgtB4+jBrBb5Ont1O9ztfIg4dmWOW153iKv/vJodd99Y9FjZwkaf5OO4tIbKI1HlDSSDsO7d92PKgYZEN5kMwGOzsybYZx5qeRFnqbHNKgkZlsjcb/+v1y/xh7G10HsuvXVPnq1pHBZZVg8Idu379+Pr8eyxKScCoriFYFjQxCZHBg6NVjutyJs0paKdSDsElDa9HIuh4lHHh/y0TqOo08/Wu/KmpkOI8Je5oRuWqN1Icfe/WHnKb4NY00skJ7xilyeKUwt9d6kSuRLCKxCdZ4QEEjRdw5JDbj87QKMbqoAmVYVuareGFa5Vtp3y+7r+VOC44WRqtk3pCsvTJXelSJmfzDubm17F5rbQQPHY5avrj/KeYW4SxEK33J4dxX1T0q/veoVXt3u691r9XkX9RIZ2PzIhrp6LFf01Ajx6NyHew46fnSI+Uo0Lbo8N7A2k11b2vEKO4C11CwlVvjARUaqRcKpwNf+v3w8frynXJaRItEUczEDQffGi+zFfZah5xGquhvNSymQmNqNdIGl8Jl4yCgGDeyDZXeCTkWNEUjRzn3diC0XVwjTy1ZNU9SRStpKXfFq2pkuUZeRcQeRv6C93H42D4ZLOvDyzHptlOFTAZ+Pu0HKf9oJNZqjQfkNTK3mXZM9vS9afm0//53DJTVES0KByalf5Ej1O9GjcxcO3HWkRmNdHaQZtHI6JDKhXj1OjIXYho1MmqKm9PI7zlEw11UP00jg6VnXiO/r0ZHK/X4PoZRbrP3Iri9S8WEzMUIDCtb4wGF+1rdvdbf371z/xUsO4ZMnJqy1+oHprP2WjPZTthrnaAxEzQyW/1MeC3vtdaIU7nz3PZe6+HK1uGOGz2nSac72T5zg3utpZtxdLLRJf0wsdqaPqzqDneZBacm1siP1xc91S5fSlTz5vc3+Uh3ZuqDYbE1HlB6PjKnB/Hm1XFqaTprJqJlZp3u3/YmOpVs6joyzFYF9MI9O8Gx3gZyYLUamWYYrOMzbVt3M0t8M8Xbc909R7Lz5O/ZubRGBttx6j6yMV7rRYy6WzsZGnIjPWjDsCtmH7SILgYHfSk6ieUu/dvfkDxWLejhxSsCNQ9dpEu6yr3WmpVfutcqJjesI7FWazyg4nd2xLMfR8vp3O8/v2oWi0mgSX0wnx/WAVHEObB/nv7sR5itHnVjQx2eYXCe/Rg+Xj8fnoIGqXz2Q2rkw6t5zsEG/dNR8tmP971YkSQpwxXS6djPh6fyPUfqhEbdKX72o6yRMYf2qdbIoCKHxy3s8ih66CJzz+epKd6Sr9RTHFEfODyaUqWRp+KiaZA8ieUuHfsfjzXTD0u/s5O6Gp2p4K7p+BZ30T7WsXpJsyNLr/7RSKzVlvfgr7f4XlYMwzBsJba8B3+nvfXB5io/EYlhGLZCW96Dv9CiHWkEEsPONvncEUMMu7Qt7wGGYRiG3aYt7wGGYRiG3aYt7wGGYRiG3aYt7wGGYRiG3aYt7wGGYRiG3aYt7wGGYRiG3aYt7wGGYRiG3aYt7wGGYRiG3aYt7wGGYRiG3aYt7wGGYRiG3aYt7wGGYRiG3ab9+v3nl/sriAAAAD8YNBIAAECDRgIAAGjQSAAAAA0aCQAAoEEjAQAANGgkAACABo0EAADQoJEAAAAaNBIAAECDRgIAAGjQSAAAAA0aCQAAoEEjAQAANGgkAACABo0EAADQoJEAAAAaNBLgCuy2m7uuX9oLADD0XXlUXksjd9vNZru7RkkzUtOA8xd5FxTad3eWsRHHL1If+059qoqyJEfstpt8gjR1dJJzTl6K9KzttpvYsczH5fzaUxyS7HYTR4ApwO0PCzNhrOTaP85OdC7TEk0lh1nX9tD8WEirIvNtcXks0GmjyhZvaeXxkNMRpt6FvpaLJ+npa+0v7ZEkDoKqJrvdruwIGplhLo1s6s3bLtZIcaxdlfRd1HsrlyxBzrKYhpPWd3d33TZMn3XyciRVcZq/1qU5NPLM7h9q5E0uR9v9yh4Rd864c9m+VTnXEVmb01IaNNkzGHclmW+TyyZHz7O6Fq9vZeW+rVhp4u3GExUb2vrLhEgSny+3JuWhiUZmuLJG9n2fJtbH5vRtSux3lbjypO36fhenD8f29WJ7VJJTifq9TzSyhla/Ci1is5Odyy7J2/axx6zDLPM1yPibFK/zbXE5yMEpuqbFG1pZHRVufBQCixdP1Olr6y8TIkmyD+HW5AIamW4BZHraaYG86bpTIrsmz3q32242m7A0uQHRd3dxOs9XSeCyrU3f3XVdl2ThpQ/8FZtjp+lkdmAKxTtlqjUt9mfSppc3VmTD+vlMX0c63SJp1PGk6o2Urov30qYsIr38vA6o+onXMkl/7eWx2gXdH4LmKw7MyjbVOOfJbwNv11HuW+iTmNYmPkxtRetQILJO89dRTo+FQleSfkcjLmkiVyNz/fzMVpbB2hDWMxdbVTxRGqljqzh/TiRxlaQ8NSjOQAyNGhluAZx0Sw/FqDbHv62i57uX2ZDY7frdzjZVPC5MQbZMkVpWytVIJ2NPI/UGiVtAhUYOY4uZPHP7Gpvt7pxpWvTdbmyLokqm3e00ksrHOt0ibtTgnIrW3m034UaKFzG73h8fXn5tHdBrGbvV03d3d6rH+lUq94fddpufjVW1qbO55p0npw2iZrI1ygTCuMZpbYwLNqXjXSHryE8Z5Wzmcf/MdCUxtiKXZRM5GlnRL6e2sg7W5qDgI6eF3DpLjRT9xRcHEUncxEY7hVS36enQqpHevEQORXcuVMpQZ+wXpAWjpEWOE5FGKiXKrSNlhc/USNEAjmdOgjzlTlLyy8nJmf1VEK15nF5U6gFBlI+ESfURWX7N3py/qv8m1kh/E0BOxJy2t9PUhoFZ16Y1hE1dHITma3FaCjXOdFOnc9WfoDCDchuInKV7fq83suCsM9UZquqX5vv6Vq4I1t6UTKQrzRJ9P6IK6Alp/mSbiV4451M1mV0ja2pfJSV3hnTS4516u7S26XRzh+1u+3L2+FvWSKdy6tP6WFcpkWFA1tO0MKvcfzp/cW6r4nnbLM07Y149ghPf0AHdHGs0sk65oulAdvzMpZHOeaoZhKpEdVrkgbkOJNdOo3f5rOMJRsWA+E6S7Up64pJ4MUMTzZ1FaVhkW6hqTOW0unT+gkEyaTSGuwNXX0fugqV8w1xIkF9HOl6du46005QajTTpJ2ikGEehpy2NmITwystLFaEn8UuSNHm0V5I73ivrnHVk4MG3A9HAursTG8FN8/WrriPr5vsilNn2P0cjPecb1pHytJyzjhxzrByx4eQ5zla2gcoi15Vy4yr4/lLryLZWruhXXiaZYr0auX64n6pI4nY5J5yrmsyvkaEidONwDqYBZtiYEW/uurHr3AaN9JKPmQeL68itbDl6L97J2Etfp5Fucw0qcaTBqkKyG9SuI0uTlHwpaXqbpu9kXygW1R7Po5YJFldmDZjU1BsfXn5tHdArqEojM1USSfqtmpt4Pe0MjXTPU2asjEnSc6EHqRoX/gRsLM/zrv18JlGuNBZKU1/PZb+J8sPercfEVi4Ha2c4jzpw/EL3H6GRaX/xzp8sOney8zkHsWB2jbRzp0237Y2YHBcu5VulzOxrs2nSyKCk4JKvvqXO+JpvBVupLtC24g2zYcWc0HPwOjhHqrlOtQk+cWphMhEtWKeRSjjCz/KlRKQnrOFwp1tUxvPx6Ir7ULXD8cjRp8jpgKX7f62vVRrZVKW+74xb0lubR2WbymmFd578NrA+9H2ciR5WFfe1Gj9k44TBRWZtswjzKUW5tDNb97x8tcvzNNH5Wchgbfu70/xRCzkDXWik6i+uOKjGb0rs1aQcKf+G36KrXTMBLIazwASAxXA2EkLQyL8cu+65kxOpa5LMsMWkGgDgZkAjAQAANH+DRgIAAFwCNBIAAECDRgIAAGjQSAAAAA0aCQAAoEEjAQAANGgkAACABo0EAADQoJEAAAAaNBIAAECDRgIAAGjQSAAAAA0aCQAAoEEjAQAANGgkAACABo0EAADQoJEAAAAaNBIAAECDRgIAAGjQSAAAAA0aCQAAoEEjAQAANGgkAACABo0EAADQoJEAAAAaNBIAAECzJo38/ecXduO2dB8BAJiTNcW1xQUAK9rSfQQAYE7WFNcWFwCsaEv3EQCAOVlTXFtcALCiLd1HAADmZE1xbXEBwIq2dB8BAJiTNcW1xQUAK9rSfQQAYE7WFNcWFwCsaEv3EQCAOVlTXFtcALCiLd1HAADmZE1xbXEBwIq2dB8BAJiTNcW1xQUAK9rSfQQAYE7WFNcWF4Ar2+Pnx7B/WNqNh/fh+ak6/dJ9BABgTtYU1xqkxfLVP15IP176/RyZP35+7D/vtTi93D+eyjrW5+P1JaNngyurb8/hVzbxw3vU1qeUL/eP8YFoJAD8FNYU16ZJztP+YjJ5UY0MMjeLubdnXZ2Xfj98vH76ehZI3f3r1/D+FurxmPj+9WsYXWqp5tJ9BABgTtYU16ZKzsN7bu21Bo2M5U1V5+3hKU7pauTTfkjWlMGGarDNi0YCwE9lTXFtsuQ87c2a6e35O7+jKsR6MKrFabH18D587L+Oh/kLrHHHUhUXLWdPiT/e98V1pLXsBcIKjXz8/EhWomIdOVYBjQSAn8qa4toMGnnYkHz51oxj6B8V4nAtc0w8JjhphlmVBuJh9yfHNI8vwa7vyTHz98O71d2SRtpMpmjkQbOFRgaYbVg0EgB+LmuKazNopLNp+Z3g/vVrvKRn8gmWWYHiykuG3vbpWHqwX1pxPXJMWbh9Jq+RXx/74eP1JbzcmDjPOhIA4MCa4tpUjRwjfvjVKFTHz49icBSMp/1Jxio0MhSSsaDxftRhGOx9pCVBTZXJu1unXiPtEjkQxWT/1uaDRgLAT2VNcW2qRprdUe/ml5d+/9U/fR/4tB/e36xsTF9HxpdCJ68jY1WbpJHmq/C2HaWRjvyjkQDwc1hTXJumkcGzH/p65EG0hsF+NbgSYmTPfi6vRwablnantPF6ZPWtudUaGebJsx8AAII1xbV6jQwOS3csjyRPOwSa5D4+aJeGT/thCG7nORJczPv+cP/1EeruAee+1uiZyIDxMmqsiA0aeWioQxH+bwjk80QjAeCvZk1xrTJM/zWmHtK4ulXu8X7b0n0EAGBO1hTXFhctrGhL9xEAgDlZU1xbXACwoi3dRwAA5mRNcW1xAcCKtnQfAQCYkzXFtcUFACva0n0EAGBO1hTXFhcArGhL9xEAgDlZU1xbXACwoi3dRwAA5mRNcW1xAcCKtnQfAQCYkzXFtcUFACva0n0EAGBO1hTXFhcArGhL9xEAgDlZU1xbXACwoi3dRwAA5mRNcW1xAcCKtnQfAQCYkzXFtcUFACva0n0EAGBOiGsAAAAaNBIAAECDRgIAAGjQSAAAAA0aCQAAoEEjAQAANGgkAACABo0EAADQoJEAAAAaNBIAAECDRgIAAGjQSAAAAA0aCQAAoEEjAQAANGgkAACABo0EAADQoJEAAAAaNBIAAECDRgIAAGjQSAAAAA0aCQAAoEEjAQAANGgkAACABo0EAADQoJEAAAAaNBIAAEDTqJG77Waz3V3Kmb676/rJJfXd3fm+XbaCE5mlZgAA0MrVNNLqX02aqpJqMm1jegXnVdf5awYAAK2gkSFoJAAAfHOGRvbd3WazuTtg5WG3/f707hjo+y7836YwWuBqpEwvMlVHGM92283osdYgm4mbPK1gUlzQOF0fS2gogXFNZqxZ6ioAANRynkZavfr+PBKD7fHvQBV2OxvdbS6ORur0UabjEcY1m3633Vg3lWhEGqmSOxVMRPCUftfvdr5G6gaYp2aOq8GpAwAAj/M0Ui0BnRtM3M3DUADKe62uC+MXnh7F6zFRQLyOFMmdCuYWirU+jcxTM272AQA4h/k1Mtzf06nNbqJN5GukTu8pSVLWrBrpVHCiRjpzh7lqJl0FAIAqLqGRBq0FXkT30rgKsMg60qlgi0a626Ei37lqxm1AAACtzK+Ru+3WBnelkcEWoHcp0xzgpZ9w1W4GjXQqWNDI2CfneqS6NDu9Zo6rAABQxewaueu3ndzeO2yXjop5SrKJdwbHfUVxp2eQPkhTd/fn2RrpVjB2PhEkc7tq593X2vW9/ey8mmXPBXoJAFCC36IDAADQoJEAAAAaNBIAAECDRgIAAGjQSAAAAA0aCQAAoEEjAQAANGgkAACABo0EAADQoJEAAAAaNBIAAECzgEb23V3Vr4UGv/x9Nu77KGc4cLY3asz8u+OT67wkCzi9227CN4fZN4rd2d4qfyzXfFf0PM5ZHBG+B66UpRhNOScvhThrzo8C1/1WcLkXuCn6jtfAwYxcWSMPcWRbrSnz/fj2KjRyZn60Rtbm03d3d902TOy/Xcy8oiY653Xvs674Wf363iRHU9bJi5FUxWnCWpfO0MihcroCUMWVNbLv+2EZTUEjV8KVNXLX97skcfmdMOKI5th/9ns+1WgKpPp6HSAuyX+fbJ1D52kkwHwscj3yHE2xb8kqvUbSpN50XfR6x3gbzSkmOLDv7jabdCMrfNVl+gKwqPB87aRDqb+NdQ72+LKNH9QxfjNZWOQpWbyQqSjHfd3mbrvZdN0mzsKtrzwnyXaj31zqk6ByNe/cro79Bu8YcQJK+UxeRzrdIjm5Y7ogP6+HT11EtgxXp58AzMzKNDIKddtefWpfSGzfTWxDh0gSFqMODP4J03T9EMUAL4/6+pkapdLYWufdTmWnXTi9xXnX73ZRjoEKpW97Lrdt6nJYGyfjnEbKl3G7BVRo5GAabMzT1chvN5uWNrnW+S68anWqX+ddpxxOt7Bn8SCP4vT6PdzMY5V6ZyaC3qir74AAM7MujXTGghMAvZhWiJeZYKhfK338Kwx6FReeBKplKq5aletcztBzoa2gYtvq76J1ZEvGzjk5VyNFAxT7U4tG1o2BmhzPWUc6ZeVXzKMwyURGRyOtVafSqWt5uE4bYACtrEsjh/Cuv8K+Y83gkqOrNR4fdsc2m004ly6Ihd3nkjVROZV8zC63RkwMK7gQ7MaFh4oQ5bVtukO+Ho3UlVOfNkTq2iFg9w2iFtRZ5f7T+afntk4jMzsZ4oSE1yOca5XOcG3ogABzszqNHHHiZ3lv7BLryMOf4Rz+euvIYp0bvMmuIx2vzl1HRvt8xYztkn2CRqbbnJGnOk/pWRLCa7bVcwu85o4TN3mkkbnjM0vByevI0AOzvxoTN0DVcC0nB5iXlWlkvw1Gq9jS8S8Zzns9MsokvV5zqeuR+sJfoc5BNfOBM3FBJ9+Zy0HmkmC5bU229iB5PdLPuFUj3cNV4qjFvathlbOZlOIkpWmzNDxhu3B7M3+41y2qNLJieFlnPIelN/EZru+AADNzAxqpB5I+sO/EVutgZ/PhHXGn6ets97V2Jw/0vqoZul7h1S0j3Lnrut6KSXWd7V7dpmUdGZR0ZzXLua2w2LaqUqG2yRtmnfp6GnlMf0rnNdep0GQHU9TCZCJasE4jVX8PP8uXEpOcsJbDdbeo08ipwys+SeXh6nVAfWM1wJzwW3QtTF0A/4VbQX9hlQAAYtDIFiZqZOGq0CpBIzOIq2+Vi8Kf4A7AmkAjW2jRyF7vCv8toJEA8ANAIwEAADRoJAAAgAaNBAAA0KCRAAAAGjQSAABAg0YCAABo0EgAAAANGgkAAKBBIwEAADTX1siG31sO3gYxR8E/+HdhZqt9/StMAADWz3U1Ur9YJ3/ATDJ5SY2c532Y31zC04o8qyvR8J4WAIB1c1WNrH4B7wVAI+fSSACAH8Ny1yOnv0MjeXGBr70T3x9pf488PGp8ZZ19HWzpl8vHHWb7pkS185zZi3bf4+e+SU/WXr2LT1Wi+jWQAAB/LUtp5MTXRUVquO3VpxsjX4UXpWs/drvxE5vAZhJ9ntMR8zr44Bpr9LmVPNU0OY28Exl5tR8rF7ynPqxEeDBbqwDwM1lEI4PYPMOBjkZ6b1Nv2/INr6HKV94XNNI5zNO8KRop6pl5l7zM0qvcT7/dCQB+Mgto5HnrEvVaRiei10inFoBgP9Ipx9FIe+jhQ0/bkjffzquRrsyF5UqNjOrPrawA8ENZ4tmPma5vOWI4SvDkdWTVenHmdaSqV+Zzd3O2tI50l5f+OhIA4Kdy9Wc/zluR9NvwDppT3JeX3iZejwx03P5jMgkegDj/emSUXDeSeRAmyccuTrPXI4MK+xdVuQgJAHD9Zz/EDl7D83Z934mt1iG4HTS4gXXifa1mr3GzCTSyOzlgXT5k135fq76B9pBaNYlxuwv3WrvuVILIPai9vTN4k7SV3m9lUQkAPxJ+i66BOXYgL7CLyT01AACXAY1s4Hx9m/FybJApGgkAcAHQyAYmaqTdtbyEmKGRAACXAY0EAADQoJEAAAAaNBIAAECDRgIAAGjQSAAAAA0aCQAAoEEjAQAANGgkAACA5soaaX4rtPg0fvC73Wez/gftL/IbPSeiV2PN21YVGc57tgEAZuGaGhm9z6nmN2fMayzOL/xiGjnvb7DO72mNf0tr5NEHZBIAbomrauTOhMnLropE4WhkdZqlNBIA4MZY6nrkZIm0b3aSrz4M4vHEd2PJV1YdXqq42USfF7I61Va9G8u80su829L7Zdfwrc6pJ7p5Yv/8utVoZFrbxsbnlVsAsCKW0Mi+mxweo4C87dWnGyNfU96xHCx4o9cQywPPf8dytA3tvmPZvu3Z6uXolGieUP/8uhU1Mnrf9Elzmxp/LP/aWwkAAK0sdl/rpBfdO1HVCdNBqA+jt7PycRyVSybv82wO9p+wZO/zFk880XH9c3J0PNAfNzZ+OUMAgJthuWc/Jl7Es1uFhe2+muit43SwIeiU4+tLdJynhbYmtpjpGuk0T9IQpbo5Hugz1tb4cbXRSAC4ZRbVyPMCpBOPx3wnryOr1oszryNVvfx8XI2U2UQiWqPzE9eRxcavWV4CANwK19RIq4qVz34kWWzDO2hOgVde+5p4PTLYsoyuwakiZ7geGSWfqpG6eWxqt27x3TaqQmFbmCrVN37Q3mdPkwAALst115HpRuTQJJd936m9xOB20OAG1on3tRo/N5vwPpWTA+ndpO33teqbTA+pS/e1Co10m8f659QtLNWtkGm4ru/tkbWNb++83bCOBICbht+ia2CO5yDnyAMAAK4CGtnA+frG4w4AACsCjWxgokbaHWb2FgEA1gMaCQAAoEEjAQAANGgkAACABo0EAADQoJEAAAAaNBIAAEDz/+jCLdCFmKWfAAAAAElFTkSuQmCC" alt="" width="440" height="171" />
下载上图所示软件到Ubuntu中;
执行后面3行命令即可;
1. OpenBLAS - 基础线性代数子程序库,里面拥有大量已经编写好的关于线性代数运算的程序
1.1 下载.zip / .tar.gz文件,解压;
1.2 安装命令
$sudo make
$sudo make PREFIX=/path/to/your/installation install
[1.3 将生成的.so库文件放入系统/lib文件夹中](可选步骤);
2. Boost库-为C++语言提供的扩展的C++程序库
方法一:(失败)
2.1 下载boost_1_60_0.tar.gz文件,解压;
2.2 安装命令
执行$sudo ./bootstrap.sh 编译成功;
执行$sudo ./bjam 开始编译,大约十几分钟,编译完成后出现:The Boost C++ Libraries were successfully built!
方法二:
直接执行命令:
$apt-cache search boost :搜索所有的boost库
$sudo apt-get install libboost-all-dev:安装相应的库
2.3 测试代码:利用boost库将字符串转换成整数
#include<iostream>
#include<boost/lexical_cast.hpp>
int main()
{
int a = boost::lexical_cast<int>("");
std::cout << a <<std::endl;
return ;
}
3. protobuf - protocol buffer:google的一种数据交换的格式
方法一:根据源码安装(失败)
3.1 下载,并解压;
3.2 安装命令
安装编译工具$sudo apt-get install autoconf automake libtool curl
执行$./autogen.sh 生成configure脚本;
失败未解决:
提示 - Google Mock not present. Fetching gmock-1.7.0 from the web... 未成功
解决:是否需要安装Google Mock?Google Mock安装指南
开始编译:
$./configure
$make
$make check
$sudo make install
$sudo ldconfig # refresh shared library cache.
方法二:(成功)
sudo apt-get install protobuf-compiler
4. OpenCV(安装时间较长)
利用自动脚本安装(脚本地址)
Ubuntu执行:
$cd Ubuntu
$chmod +x *
$./opencv_latest.sh
5. Python(安装时间较长)
Ubuntu中缺省安装了Python;
执行$sudo apt-get install python-pip 安装pip(Python的一个安装和管理扩展库的工具);
下载caffe,解压,再进入python文件夹下,执行$ for req in $(requirements.txt); do pip install $req; done 操作,安装caffe中对Python的依赖项;
/*****************************/
//安装caffe
/****************************/
关键在于正确配置Makefile.config文件:
cp Makefile.config.example Makefile.config
根据情况修改配置:
CUDA_DIR;
BLAS:=open;(使用OpenBLAS)
未使用python接口则将对应的参数注释掉;
INCLUDE_DIRS和LIBRARY_DIRS下需要加入caffe所需要的所有头文件和库目录的文件夹地址;
配置完成后,执行命令:(这部分操作中使用的是cmake)
$make all - 编译生成caffe的库文件_caffe.so
caffe学习笔记(1)安装 - Ubuntu 15.04的更多相关文章
- [樹莓派]用mkusb来制作U盘启动安装Ubuntu 15.04
之前實踐過這文章的描述,還可以成功:http://www.linuxdiyf.com/linux/12719.html,轉記錄餘下: 官方英文文档,教你在Ubuntu 15.04下使用mkusb来制作 ...
- Caffe学习笔记2--Ubuntu 14.04 64bit 安装Caffe(GPU版本)
0.检查配置 1. VMWare上运行的Ubuntu,并不能支持真实的GPU(除了特定版本的VMWare和特定的GPU,要求条件严格,所以我在VMWare上搭建好了Caffe环境后,又重新在Windo ...
- Caffe + Ubuntu 15.04 + CUDA 7.0 安装以及配置
作为小码农的我,昨天就在装这个东东了,主要参考第一篇博文,但是过程发现很多问题,经过反反复复,千锤百炼,终于柳暗花明,我把这个caffe给搞定了,是故,我发布出来,后之来者,欲将有感于斯文~ 本分分为 ...
- 如何在 Ubuntu 15.04 系统中安装 Logwatch
大家好,今天我们会讲述在 Ubuntu 15.04 操作系统上如何安装 Logwatch 软件,它也可以在各种 Linux 系统和类 Unix 系统上安装.Logwatch 是一款可定制的日志分析和日 ...
- docker学习笔记(一)—— ubuntu16.04下安装docker
docker学习笔记(一)—— ubuntu16.04下安装docker 原创 2018年03月01日 14:53:00 标签: docker / ubuntu 1682 本文开发环境为Ubuntu ...
- 在ubuntu 15.04下安装VMware Tools
提出问题:在Ubuntu 15. 04版本上,不能实现剪贴板的共享 解决方法:发现没有装VMware Tools 安装VMware Tools步骤 1. 点击菜单栏,虚拟机 → 安装VMware工具 ...
- ubuntu 15.04怎么安装QQ
ubuntu 15.04怎么安装QQ | 浏览:468 | 更新:2015-07-21 10:20 1 2 3 4 5 6 7 分步阅读 新装的ubuntu不能没有QQ,我们需要安装QQ来进行及时交流 ...
- Ubuntu 15.04 安装配置 Qt + SQLite3
序 最近需要在Ubuntu下使用Qt开发项目,选择简单小巧的SQLite数据库,现将安装配置以及简单操作记录如下,以便日后查阅. 安装Qt CMake和Qt Creator是Linux下开发C++程序 ...
- Ubuntu 15.04下安装Docker
最近听说Docker很火,不知道什么东西,只知道是一个容器,可以跨平台.闲来无事,我也来倒弄倒弄.本文主要介绍:Ubuntu下的安装,以及基本的入门命令介绍:我的机器是Ubuntu 15.04 64位 ...
随机推荐
- Spring (五):AOP
本文是按照狂神说的教学视频学习的笔记,强力推荐,教学深入浅出一遍就懂!b站搜索狂神说或点击下面链接 https://space.bilibili.com/95256449?spm_id_from=33 ...
- protobuf总结
1.protobuf是什么? protobuf(protocol buffers)是一种语言中立,平台无关,可扩展的序列化数据的格式,可以用于通信协议,数据存储等. protobuf 相比于xml,j ...
- Flask 入门(五)
jinjia2模板传参 在html中调用python代码中传入的参数规则己经在上文中说明白了,下面,我们来实用一下: 1.编辑index.py中的代码如下: from flask import Fla ...
- javascript 入门 之select2选择本地数据
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"/> <meta lan ...
- 36 Thread 多线程
/* * 多线程的实现方式: * 方式1:一种方法是将类声明为 Thread 的子类.该子类应重写 Thread 类的 run 方法.接下来可以分配并启动该子类的实例 * * Thread * Str ...
- SQL基础系列(2)-内置函数--转载w3school
1. 日期函数 Mssql: SELECT GETDATE() 返回当前日期和时间 SELECT DATEPART(yyyy,OrderDate) AS OrderYear, DATEPART( ...
- Powershell 输出信息过多,结尾显示省略号
有时候我们通过powershell指令去查询某些信息时,因为输出结果过多,导致一部分重要信息被省略号代替,如下图 面对这种情况无论是 |fl 还是 out-file 亦或是 export-csv都无 ...
- Volatile可见性分析(一)
JUC(java.util.concurrent) 进程和线程 进程:后台运行的程序(我们打开的一个软件,就是进程) 线程:轻量级的进程,并且一个进程包含多个线程(同在一个软件内,同时运行窗口,就是线 ...
- Linux常用命令01(文件和目录)
目标 查看目录内容 ls 切换目录 cd 创建和删除文件 touch rm mkdir 拷贝和移动文件 cp mv 查看文件内容 cat more grep 其他 echo 重定向 > 和 &g ...
- stand up meeting 11/16/2015
第一周,熟悉任务中~ 大致写下一天的工作: 冯晓云:熟悉bing接口,本意是调在线的必应词典API,参阅了大量C#调用API开发.net的工作,[约莫是因为有个窗口互动性更强,所以这样的工作更有趣,也 ...