引言

近几年来,CNN在ImageNet竞赛的表现越来越好。为了追求分类准确度,模型越来越深,复杂度越来越高,如深度残差网络(ResNet)其层数已经多达152层。但是在真实场景中如移动或者嵌入式设备,大而复杂的模型是难以被应用的。模型过于庞大会面临内存不足的问题,其次模型的过于复杂也使得响应速度过慢,很难达到实时要求。

目前的研究主要分为两个方向:一是对训练好的的复杂模型进行压缩得到小模型;二是直接设计小模型并进行训练。不管怎样,其目的都是在保持模型性能(accuracy)的前提下降低模型大小(parameters size),同时提升速度(speed)。MobileNet属于后者,是Google提出的一种小巧而高效的CNN模型。

Depthwise separable convolution

MobileNet的基本单元是深度级可分离卷积(depthwise separable convolution),这种结构其实已经在inception中使用。深度级可分离卷积其实是将一个卷积分解成两个更小的卷积:depthwise convolution和 pointwise convolution,如图1所示。Depthwise convolution和标准卷积不同,标准卷积的卷积核作用在所有输入通道上(input channels),而depthwise convolution针对每个输入通道采用不同的卷积核,也就是说一个卷积核对应一个输入通道。而pointwise convolution其实就是普通的卷积,只不过采用的是1x1的卷积核。

图2中更清晰地展示了两种操作,对于depthwise separable convolution,其首先是采用depthwise convolution对不同的输入通道分别进行卷积,然后采用pointwise convolution将上面的输出再进行结合。整体效果和标准卷积差不多,但是会大大减少计算量和模型参数量

图1 Depthwise separable convolution

图2 Depthwise convolution和 pointwise convolution

这里简单分析一下depthwise separable convolution在计算量上与标准卷积的差别。假定输入特征图大小是,而输出特征图大小是,其中是特征图的width和height,这里假定两者是相同的,M指的是通道数(channels),卷积核为

对于标准卷积,其计算量为:

对于depthwise convolution。其输入为,输出为,卷积核为 。但是一个卷积核只对应一个通道。因此一个输出通道的计算量为,而输出有M个通道。故计算量为

对于pointwise convolution。其输入为,输出为,卷积核为1x1。

其计算量为:

所以depthwise separable convolution总计算量为:

可以比较depthwise separable convolution和标准卷积的计算量:

一般情况下比较大,就很接近0,那么如果采用3x3卷积核的话,depthwise separable convolution相较标准卷积可以降低大约9倍的计算量。其实后面会有对比,参数量会减少很多。

MobileNet网络结构

前面讲述了depthwise separable convolution,这是MobileNet的基本组件,但是在真正应用中会加入batchnorm,并使用ReLU激活函数,所以

depthwise separable convolution的基本结构如图3所示。

图3 加入BN和ReLU的depthwise separable convolution

MobileNet的网络结构如表1所示。首先是一个3x3的标准卷积,然后后面就是堆积depthwise separable convolution,并且可以看到其中的部分depthwise convolution会通过strides=2进行下采样(down sampling)。然后采用average pooling将feature变成1x1,根据预测类别大小加上全连接层,最后一个是softmax层。

如果单独计算depthwise convolution和pointwise convolution,整个网络的有28层(这里Avg Pool和Softmax不计算在内。13+10+4+1=28)。我们还可以分析整个网络的参数和计算量分布,如表2所示。可以看到整个计算量基本集中在1x1卷积上,如果你熟悉卷积底层实现的话,你应该知道卷积一般通过im2col方式实现,其需要内存重组,但是当卷积核为1x1时,其实就不需要这种操作了,底层可以有更快的实现。对于参数也主要集中在1x1卷积,除此之外还有就是全连接层占了一部分参数。

表1 MobileNet的网络结构

表2 MobileNet网络的计算与参数分布

MobileNet到底效果如何,这里与GoogleNet和VGG16做了对比,如表3所示。相比VGG16,MobileNet的准确度稍微下降,但是优于GoogleNet。然而,从计算量和参数量上MobileNet具有绝对的优势

表3 MobileNet与GoogleNet和VGG16性能对比

MobileNet瘦身

前面说的是MobileNet的基准模型,但是有时候需要更小的模型,那么就需要对MobileNet进行瘦身。这里引入了两个超参数:width multiplier和resolution multiplier。第一个参数width multiplier主要是按比例减少通道数,该参数记为 α,其取值范围为(0,1],那么输入与输出通道数将变成 和  ,对于depthwise separable convolution,其计算量变为:

因为主要计算量在后一项,所以width multiplier可以按照比例降低计算量,其实参数量也会下降。第二个参数resolution multiplier主要是按比例降低特征图的大小,记为 ,比如原来输入特征图是224x224,可以减少为192x192,加上resolution multiplier,depthwise separable

convolution的计算量为:

要说明的是,resolution multiplier仅仅影响计算量,但是不改变参数量。引入两个参数肯定会降低MobileNet的性能。总结来看是在accuracy和computation,以及accuracy和model size之间做折中。

MobileNet的Tensorflow实现

tensorflow的nn库有depthwise convolution算子tf.nn.depthwise_conv2d,所以MobileNet很容易在tensorflow上实现:

class MobileNet(object):
def __init__(self, inputs, num_classes=1000, is_training=True,
width_multiplier=1, scope="MobileNet"):
"""
The implement of MobileNet(ref:https://arxiv.org/abs/1704.04861)
:param inputs: 4-D Tensor of [batch_size, height, width, channels]
:param num_classes: number of classes
:param is_training: Boolean, whether or not the model is training
:param width_multiplier: float, controls the size of model
:param scope: Optional scope for variables
"""
self.inputs = inputs
self.num_classes = num_classes
self.is_training = is_training
self.width_multiplier = width_multiplier # construct model
with tf.variable_scope(scope):
# conv1
net = conv2d(inputs, "conv_1", round(32 * width_multiplier), filter_size=3,
strides=2) # ->[N, 112, 112, 32]
net = tf.nn.relu(bacthnorm(net, "conv_1/bn", is_training=self.is_training))
net = self._depthwise_separable_conv2d(net, 64, self.width_multiplier,
"ds_conv_2") # ->[N, 112, 112, 64]
net = self._depthwise_separable_conv2d(net, 128, self.width_multiplier,
"ds_conv_3", downsample=True) # ->[N, 56, 56, 128]
net = self._depthwise_separable_conv2d(net, 128, self.width_multiplier,
"ds_conv_4") # ->[N, 56, 56, 128]
net = self._depthwise_separable_conv2d(net, 256, self.width_multiplier,
"ds_conv_5", downsample=True) # ->[N, 28, 28, 256]
net = self._depthwise_separable_conv2d(net, 256, self.width_multiplier,
"ds_conv_6") # ->[N, 28, 28, 256]
net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,
"ds_conv_7", downsample=True) # ->[N, 14, 14, 512]
net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,
"ds_conv_8") # ->[N, 14, 14, 512]
net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,
"ds_conv_9") # ->[N, 14, 14, 512]
net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,
"ds_conv_10") # ->[N, 14, 14, 512]
net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,
"ds_conv_11") # ->[N, 14, 14, 512]
net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,
"ds_conv_12") # ->[N, 14, 14, 512]
net = self._depthwise_separable_conv2d(net, 1024, self.width_multiplier,
"ds_conv_13", downsample=True) # ->[N, 7, 7, 1024]
net = self._depthwise_separable_conv2d(net, 1024, self.width_multiplier,
"ds_conv_14") # ->[N, 7, 7, 1024]
net = avg_pool(net, 7, "avg_pool_15")
net = tf.squeeze(net, [1, 2], name="SpatialSqueeze")
self.logits = fc(net, self.num_classes, "fc_16")
self.predictions = tf.nn.softmax(self.logits) def _depthwise_separable_conv2d(self, inputs, num_filters, width_multiplier,
scope, downsample=False):
"""depthwise separable convolution 2D function"""
num_filters = round(num_filters * width_multiplier)
strides = 2 if downsample else 1 with tf.variable_scope(scope):
# depthwise conv2d
dw_conv = depthwise_conv2d(inputs, "depthwise_conv", strides=strides)
# batchnorm
bn = bacthnorm(dw_conv, "dw_bn", is_training=self.is_training)
# relu
relu = tf.nn.relu(bn)
# pointwise conv2d (1x1)
pw_conv = conv2d(relu, "pointwise_conv", num_filters)
# bn
bn = bacthnorm(pw_conv, "pw_bn", is_training=self.is_training)
return tf.nn.relu(bn)

完整实现可以参见GitHub

总结

本文介绍了Google提出的移动端模型MobileNet,其核心是采用了可分解的depthwise separable convolution,其不仅可以降低模型计算复杂度,而且大大地降低了模型大小。当然MobileNet还有其他版本,后面再介绍

参考:

MobileNet:Efficient Convolutional Neural Networks for Mobile Vision Applications

CNN模型之MobileNet

对MobileNet网络结构的解读的更多相关文章

  1. 轻量化模型:MobileNet v2

    MobileNet v2 论文链接:https://arxiv.org/abs/1801.04381 MobileNet v2是对MobileNet v1的改进,也是一个轻量化模型. 关于Mobile ...

  2. 轻量级CNN模型mobilenet v1

    mobilenet v1 论文解读 论文地址:https://arxiv.org/abs/1704.04861 核心思想就是通过depthwise conv替代普通conv. 有关depthwise ...

  3. 深度学习(七十)darknet 实现编写mobilenet源码

    一.添加一个新的网络层 (1)parse.c文件中函数string_to_layer_type,添加网络层类型解析: if (strcmp(type, "[depthwise_convolu ...

  4. 卷积神经网络学习笔记——轻量化网络MobileNet系列(V1,V2,V3)

    完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 这里结合网络的资料和Mo ...

  5. 从Inception v1,v2,v3,v4,RexNeXt到Xception再到MobileNets,ShuffleNet,MobileNetV2

    from:https://blog.csdn.net/qq_14845119/article/details/73648100 Inception v1的网络,主要提出了Inceptionmodule ...

  6. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    1. 摘要 作者提出了一系列应用于移动和嵌入式视觉的称之为 MobileNets 的高效模型,这些模型采用深度可分离卷积来构建轻量级网络. 作者还引入了两个简单的全局超参数来有效地权衡时延和准确率,以 ...

  7. 深度学习论文翻译解析(六):MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Appliications

    论文标题:MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Appliications 论文作者:Andrew ...

  8. 深度学习论文翻译解析(十七):MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    论文标题:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文作者:Andrew ...

  9. 网络结构解读之inception系列五:Inception V4

    网络结构解读之inception系列五:Inception V4 在残差逐渐当道时,google开始研究inception和残差网络的性能差异以及结合的可能性,并且给出了实验结构. 本文思想阐述不多, ...

随机推荐

  1. javascript入门 之 ztree(三 简单json数据)

    <!DOCTYPE html> <HTML> <HEAD> <TITLE> ZTREE DEMO - Standard Data </TITLE& ...

  2. Linux 磁盘管理篇,目录管理(一)

    目录:     当我们在linux的ext2档案建立一个目录时,ext2会分配一个inode与至少一块Block给该目录,其中inode记录该目录在相关属性,并指向分配到在那块Block,而block ...

  3. 20175110 王礼博 exp4恶意代码分析

    目录 1.基础知识 2.系统运行监控 3.恶意软件分析 4.基础问题回答 5.实践总结与体会 1. 基础知识 1.1 恶意代码的概念与分类 定义:指故意编制或设置的.对网络或系统会产生威胁或潜在威胁的 ...

  4. 深入了解CI/CD:工具、方法、环境、基础架构的全面指南

    本文来自Rancher Labs 持续集成和持续交付(CI/CD)是DevOps背后的助推力之一.如果你的企业正在考虑使用DevOps,那么CI/CD绝对是需要考虑的其中一部分.但是CI/CD到底意味 ...

  5. 拓扑排序入门详解&&Educational Codeforces Round 72 (Rated for Div. 2)-----D

    https://codeforces.com/contest/1217 D:给定一个有向图,给图染色,使图中的环不只由一种颜色构成,输出每一条边的颜色 不成环的边全部用1染色 ps:最后输出需要注意, ...

  6. 用python爬取之后发现果然如此,都说知乎的小姐姐漂亮

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取http ...

  7. 从联想昭阳到MacBook Pro,致我的那些败家玩意——电脑

    对于程序员来说,你懂的,电脑就是我们的女朋友,在很多层面上,它都是,打游戏.敲代码,以及看影片. 我第一台电脑是联想的笔记本(昭阳系列),花了 4000 多块买的. 那时候,家里很是缺钱,4000 多 ...

  8. 快速搭建网站信息库(小型Zoomeye)

    前言:本来是不想重复造车轮的,网上资料有开源的fofa,和一些设计.有的架设太复杂了,好用东西不会用,整个毛线.还有的没有完整代码. 设计方案:    测试平台:windows    测试环境:php ...

  9. 5. git 过滤,让某文件夹里无法提交新添加的文件

    . gitignore  向此文件里添加文件路径就行了.如( web/core/ ) 此时git status将看不到添加的文件或文件夹了

  10. Shellshock远程命令注入(CVE-2014-6271)漏洞复现

    请勿用于非法用法,本帖仅为学习记录 shelshocke简介: shellshock即unix 系统下的bash shell的一个漏洞,Bash 4.3以及之前的版本在处理某些构造的环境变量时存在安全 ...